DAV UNIVERSITY JALANDHAR

Course Scheme & Syllabus

For

Master of Technology In Mechanical Engineering

1stTO 4thSEMESTER Examinations 2023–2024 Session

Syllabi Applicable For Admissions in 2023

Optional Induction program (Appendix A) [Induction program for students to be offered right at the start of the first year.]

Induction Program (Optional)

- Physical activity
- Creative Arts
- Universal Human Values
- Literary
- Proficiency Modules
- Lectures by Eminent People
- Visits to local Areas
- Familiarization to Dept. /Branch & Innovations

PROGRAMME EDUCATIONAL OUTCOMES (PEOs)

After the successful completion of undergraduate course, Mechanical Engineering, Graduates will be able to:

PEO1: Plan, design, construct, maintain and improve mechanical engineering systems that are technically sound, economically feasible and socially acceptable.

PEO2: Apply analytical, computational and experimental techniques to address the challenges faced in mechanical and allied engineering streams.

PEO3: Communicate effectively using conventional platforms as well as innovative / online tools and demonstrate collaboration, networking & entrepreneurial skills.

PEO4: Exhibit professionalism, ethical attitude, team spirit and pursue lifelong learning to achieve career, organizational and societal goals.

PROGRAMME OUTCOMES (POs)

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

P07: Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECFIC OUTCOMES (PSOs)

PSO1: Apply mechanical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society.

PSO2: Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services.

Code	Definitions
L	Lecture
Т	Tutorial
Р	Practical
HS Courses	Humanities & Social Science
BS	Basic Science Courses
ES	Engineering Science Courses
PC	Program Core Courses
PE	Program Elective Courses
OE	Open Elective Courses
EEC	Employment Enhancement Courses (Project/Summer Internship/Seminar)
AEC-C	Ability Enhancement Course-Common
VAC-C	Value Added Course-Common

Mapping of PEO with PO

	PEO1	PEO2	PEO3	PEO4
PEOs				
POs				
P01			Y	Y
PO2			Y	Y
PO3	Y		Y	Y
P04			Y	Y
P05	Y	Y	Y	Y
P06	Y	Y	Y	Y
P07	Y	Y	Y	Y
P08			Y	Y
P09			Y	Y
P010				Y
P011				Y
P012	Y	Y	Y	Y

Mapping of PEO with PSO

PSOs PEOs	PSO1	PSO2
PEO1	Y	Y
PEO2	Y	Y
PEO3	Y	Y
PEO4	Y	Y

Scheme of Courses M. Tech Mechanical Engineering Semester-1

S.NO.	Paper Code	Course Title	L	Т	Р	Cr	Nature of Course
1.	MEDXXX	Research Methodology	3	0	0	3	РС
2.	XXX	Mathematical Methods in Engineering	3	0	0	3	РС
3.	MEDXXX	Optimization Techniques in Design	3	0	0	3	РС
4.	MEDXXX	Mechanics of Composite Materials	3	0	0	3	РС
5.	XXX	Research Paper Writing and Ethics/AC-I	2	0	0	2	AEC-C
6.	MEDXXX	Mechanical Lab-I (Manufacturing)	0	0	4	2	РС
						r	Fotal=16CR

L: Lectures T: Tutorial P: Practical Cr: Credits

Scheme of Courses M. Tech Mechanical Engineering Semester-2

S.NO.	Paper Code	Course Title	L	Т	Р	Cr	Nature of Course
1.	MEDXXX	CAD/CAM	3	0	0	3	РС
2.	MEDXXX	Specialization Course-I	3	0	0	3	PE
3.	MEDXXX	Specialization Course-II	3	0	0	3	PE
4.	MEDXXX	Specialization Course-III	3	0	0	3	PE
5.	XXX	Generic Elective -I	3	0	0	3	GE
6.	MEDXXX	Mechanical Lab -II (CAD/CAM)	0	0	4	2	РС
7.	XXX	Seminar/AC-II	0	0	4	2	AEC-C
]	Fotal=19CR

L: Lectures T: Tutorial P: Practical Cr: Credits

Note: **AC I & AC II ie Audit courses can be offered from interdisciplinary courses or from list of courses provided in* **DAVU NEP Curricular Guidelines.**

Scheme of Courses M. Tech Mechanical Engineering Semester-3

S.NO.	Paper Code	Course Title	L	Т	Р	Cr	Nature of Course
1.	MEDXXX	Specialization Course-IV	3	0	0	3	PE
2.	XXX	Generic Elective -II	3	0	0	3	GE
3.	MEDXXX	Mechanical Lab -III (Specialization)	0	0	4	2	PE
4.	MEDXXX	Dissertation Part – I*	0	0	22	11	EEC
							Total=19CR

L: Lectures T: Tutorial P: Practical Cr: Credits

Scheme of Courses M Tech Mechanical Engineering Semester-4

S.NO.	Paper Code	Course Title	L	Т	Р	Cr	Nature of Course
1	MEDXXX	Dissertation Part – II*	0	0	32	16	EEC
							Total=16CR

L: Lectures T: Tutorial P: Practical Cr: Credits

Note: *At the end of the examination of 4th Semester based on specialization course and field of research for dissertation-I and II. The degree will be offered in: M Tech (Mechanical Engineering)-Specialization: Design Engineering, M Tech (Mechanical Engineering)-Specialization: Thermal Engineering, M Tech (Mechanical Engineering)-Specialization: Manufacturing and Automation Engineering, M Tech (Mechanical Engineering)-Specialization: Industrial Engineering

Specialization Course -I

S.NO.	Paper Code	Course Title	L	Т	Р	Cr	Nature of Course
1	MEDXXX	Engineering Tribology	3	0	0	3	PE-Design Engg.
2	MEDXXX	Advanced Fluid Dynamics	3	0	0	3	PE-Thermal Engg.
3	MEDXXX	Metal Casting and Forming	3	0	0	3	PE-Mnuf. & Automation
4	MEDXXX	Quality Control and Reliability	3	0	0	3	PE-Industrial Engg
5		MOOC Courses	3	0	0	3	

Specialization Course -II

S.NO.	Paper Code	Course Title	L	Т	Р	Cr	Nature of Course
1	MEDXXX	Finite Element Method	3	0	0	3	PE-Design Engg.
2	MEDXXX	Modelling of IC Engines	3	0	0	3	PE-Thermal Engg.
3	MEDXXX	Welding Technology	3	0	0	3	PE-Mnuf. & Automation
	MEDXXX	Material Management	3	0	0	3	PE-Industrial Engg
4		MOOC Courses	3	0	0	3	

Specialization Course -III

S.NO.	Paper Code	Course Title	L	Т	Р	Cr	Nature of Course
1	MEDXXX	Advance Materials	3	0	0	3	PE-Design Engg.
2	MEDXXX	Design of solar and wind System	3	0	0	3	PE-Thermal Engg.
3	MEDXXX	Non-Destructive Testing	3	0	0	3	PE-Mnuf. & Automation
4	MEDXXX	Supply Chain Management	3	0	0	3	PE-Industrial Engg
5		MOOC Courses	3	0	0	3	

Specialization Course -IV

S.NO.	Paper Code	Course Title	L	Т	Р	Cr	Nature of Course
1	MEDXXX	Design of Robotic System	3	0	0	3	PE-Design Engg.
2	MEDXXX	Design of Heat Exchanges	3	0	0	3	PE-Thermal Engg.
3	MEDXXX	Design for manufacturing and Assembly	3	0	0	3	PE-Mnuf. & Automation
4	MEDXXX	Industrial and Organizational Psychology	3	0	0	3	PE-Industrial Engg
6	MOOC Cou	rses	3	0	0	3	

Generic Elective -I

S.NO.	Paper Code	Course Title	L	Т	Р	Cr	Nature of Course
1			3	0	0	3	GE
	MOOC Course	es					

Generic Elective - II

S.NO.	Paper Code	Course Title	L	Т	Р	Cr	Nature of Course
1			3	0	0	3	GE
	MOOC Course	es					

Generic Elective I and II -Provided by other departments.

B Tech Course Structure

CBCS	Nature of Courses	Core	Elective Courses			Ability Enhai Course	Total Credits	
Year	Course Structure	Core	Dissertation/ Project(EEC)	Open Elective/ MOOC Courses	Program Elective/ MOOC Courses	Ability Enhancement Compulsory Courses	Value Added Courses	
2023	M.TECH	19	27	6	14	4	0	70

Course Code	MED								
Course Title	Research Methodology								
Course	CO1: To prov	CO1: To provide basic knowledge about research.							
Outcomes	CO2: To learn about different methods of data collection.								
	CO3: To lear	n about various da	ta analysis	techniqu	es.				
	CO4: To prov	vide basic knowled	ge of repo	rt writing.					
Examination	Theory								
Mode									
Assessment	Written	Assignment/	MSE	MTP	ESE	EPR	ABL/PBL		
Tools	Quiz	Project Work							
Weightage	10%	10%	25%		50%		5%		
	1	Syllabus					CO Mapping		
Unit 1									
	Introduction	n to Research: N	Aeaning o	of Reseau	rch, Obje	ectives of	CO1		
	Research, T	ypes of Research,	Research	Approach	nes, Signit	ficance of			
	Research, R	lesearch Process,	Criteria o	f Good R	lesearch,	Problems			
	Encountered	d by Researchers in	India.						
	Defining th	e Research Proble	em: Resea	arch Prob	lem, Sele	ecting the			
	Problem, Ne	ecessity of Defining	g the Prol	olem, Tec	hnique Ir	volved in			
	Defining a P	roblem							
	Research Design: Meaning of Research Design, Need for Research								
	Design, Feat	tures of a Good D	esign, Imp	ortant Co	oncepts R	elating to			
	Research D	nciples of							
	Experimenta	al Designs, factors	affecting	RDs, Re	lation am	ong RDs,			
	Developing								
Unit 2									
	Sampling de	esign and Procedu	res: Sam	ole or Cer	nsus. The	Sampling	CO2		
	Design Proc	cess. A Classificatio	on of Sam	npling Tec	chniques.	Choosing			
	Nonprobabi	lity Versus Probabi	lity Samp	ing. Uses	of Non-r	robability			
	Versus Prob	ability Sampling	-7 1-	0,					
	Measureme	nt and Scaling:	Non-comp	arative S	caling Te	chniques.			
	Continuous	Rating Scale. Iter	nized Rat	ing Scale	. Non-co	mparative			
	Itemized Ra	ting Scale Decision	s. Multi-it	em Scale	s. Scale E	valuation.			
	Choosing a S	Scaling Technique	-,		-,	,			
	Methods of	Data Collection: C	ollection of	of Primary	/ Data. Oł	servation			
	Method.	Interview Metho	d. Colle	ction of	f Data	through			
	Questionnai	res. Collection of	Data thro	ugh Sche	dules. So	me Other			
	Methods of	Data Collection. Co	llection of	Secondar	v Data. Se	election of			
	Appropriate Method for Data Collection								
Unit 3	11 12.000								
	Questionna	ire & form design	: questior	nnaire &	observati	on forms.	CO3		
	questionnai	re design process.	-1						
	Data prepar	ation: editing. codi	ng, transc	ribing					
	Data analys	is: tests of significat	nce based	on t. f. an	d z distrib	ution and			
	chi-square t	est: cross-tabulatio	n	, ., ., un					
	Multiple Re	egression: Overvie	w of Mi	ultiple Re	gression.	Statistics			
	Associated v	with Multiple Regre	ssion. Cor	ducting N	/ultiple R	egression			
	Stepwise Re	gression. Multicolli	nearity	0		5			
Unit 4		<u> </u>	-1						

	Research Report Writing: Contents of Report, Executive Summary, CO4
	Bibliography format. Presentation of Report
	Plagiarism identification, research ethics.
Text Books	1) Kothari, C.R. Research Methodology, New Age Publishers. Print.
Reference	2) Bajpai Naval, Business Research Methods, Pearson Publications.
Books	Print.
	 Malhotra, Naresh K. Marketing Research: An Applied Orientation, 5th Edition. Pearson/Prentice-Hall, 2007. Print.
	 Proctor Tony, Essentials of Marketing Research, Prentice Hall, 4th Edition. Print.
	5) Beri, G. C. Marketing research, McGraw-Hill, 4th Edition. Print.

Course Code	MED									
Course Title	Optimization Techniques in Design									
Course	On the completion of the course the student will be able to:									
Outcomes	CO1: Comprehend the techniques and applications of Engineering optimization.									
	CO2: Apply basic concepts of mathematics to formulate an optimization problem									
	CO3: Analyze various methods of solving the unconstrained minimization problem									
	CO4: Analyze and appreciate variety of performance measures for various optimization									
	problems	problems								
Examination	Theory									
Mode	,									
Assessment	Written	Assignment/ Project	MSE	MTP	ESE	EPR	ABL/PBL			
Tools	Quiz	Work	_		-		,			
Weightage	10%	10%	25%	-	50%	-	5%			
Svllabus						I	CO Mapping			
Unit 1	Introducti	ion to optimization								
	Introducti	on to Classical Metho	nds & Lin	ear Prog	ramming	Problems	CO1			
	Terminolo	ogy. Design Variables. C	onstraints	Objectiv	e Functio	n. Problem	001			
	Formulati	on. Calculus method.	Kuhn Tu	cker con	ditions. N	Aethod of				
	Multiplier	s. Linear Programming	Problem.	Simplex	method. T	Two-phase				
	method. I	Big-M method. duality.	Integer li	near Pro	gramming	. Dvnamic				
	Programming, Sensitivity analysis									
Unit 2	Sinale Va	Sinale Variable Ontimization Problems								
	Ontimality	CO2								
	Interval F	alving Method. Fibon	acci Sear	ch Metho	od. Golde	en Section	001			
	Method. (
	Method. S									
Unit 3	Multivaria									
	Multi Var	iable and Constrained	Optimiz:	ation Tec	chnique.	Ontimality	03			
	criteria. D	irect search Method. S	implex sea	arch meth	nods. Hoo	ke-Jeeve's				
	pattern se	earch method. Powell's	coniugate	directio	n method	. Gradient				
	based me	thod. Cauchy's Steepe	st descent	method.	Newton	s method.				
	Conjugate	gradient method. Kuh	n - Tucker	condition	ns, Penalty	/ Function,				
	Concept of	of Lagrangian multiplie	er. Compl	ex search	n method	. Random				
	search me	ethod.	, ,							
Unit 4	Intelligen	t Optimization Technig	ues							
	Introducti	on to Intelligent Optir	nization.	Genetic A	Algorithm	: Types of	CO4			
	reproduct	ion operators, crossov	/er & mu	tation, S	imulated	Annealing				
	Algorithm	, Particle Swarm Opti	mization (PSO), Ge	enetic Pro	gramming				
	(GP): Prin	ciples of genetic progra	amming, t	erminal s	ets, funct	ional sets,				
	difference	es between GA & GP, r	andom po	pulation	generatio	on, solving				
	differentia	al equations using GP.		•	0	, 0				
Text Books	1. S. S. Rad	o, Engineering Optimiza	tion: Theo	ory and Pr	ractice, W	'iley, 2008.				
	2. K. Deb,	Optimization for Engin	eering des	ign algor	ithms and	l Examples				
	, Prentice	Hall, 2nd edition 2012.	-			-				
Reference	1. C.J. Ray	, Optimum Design of M	echanical	Elements	, Wiley, 2	007.				
Books	, 2. R. Sa	ravanan, Manufacturi	ng Optim	ization	through	Intelligent				
	Technique	es, Taylor & Francis Pub	lications, 2	2006.	÷	-				
	3. D. E.	Goldberg, Genetic alg	orithms ir	Search,	Optimiza	ation, and				
	Machine	Learning, Addison-Wes	slev Longm	, nan Publis	shing, 198	9.				

Course Code	MED								
Course Title	Mechanic	Mechanics of Composite Materials							
Course	On the completion of the course the student will be able to:								
Outcomes	CO1: To understand the basic concepts and difference between composite materials with								
	conventio	conventional materials.							
	CO2: To understand role of constituent materials in defining the average properties and								
	response	response of composite materials on macroscopic level.							
	CO3: To a	pply knowledge for finc	ling failur	e envelop	es and st	ress-strain p	lots of laminates.		
	CO4: To d	evelop a clear understa	inding to	utilize sub	oject knov	, vledge using	computer		
	programs	to solve problems at st	ructural l	evel.	-	0 0	•		
Examination	Theory	·							
Mode									
Assessment	Written	Assignment/ Project	MSE	MTP	ESE	EPR	ABL/PBL		
Tools	Quiz	Work	_		_		,		
Weightage	10%	10%	25%	-	50%	_	5%		
Syllabus		20/0			00/0		CO Manning		
Synabas							co mapping		
Unit 1	Introduct	ion							
	Definition	and characteristics. Ov	verview o	fadvanta	ge and lin	nitations of	CO1		
	composite	e materials. Significance	and obie	ctives of o	composite	e materials.			
	Science ar	nd technology, current	status and	l future n	rospectus	5.			
	Basic Con	cents and Characteristi	ics	a rucure p	roopeeta				
	Structural performance of conventional material Geometric and								
	nhysical definition Material response Classification of composite								
	materials Scale of analysis: Micromechanics Basic lamina properties								
	Constituent materials and properties. Properties of typical composite								
	materials								
Unit 2	Unidirecti	ional Lamina							
	Flastic Be	havior					CO2		
	Stress-str	ain relations Relation h	netween r	nathemat	ical and e	ongineering	002		
	constants	transformation of stre	ss strain	and elast	ic narame	oters			
	Strength		55, 5tram						
	Micromed	hanics of failure: fai	ilure me	chanisms	Macro-	mechanical			
	strength r	parameters Macromed	hanical fa	ilure ther	nies Ann	licability of			
	various fa	ilure theories		nuic thet	лез, дрр	incubility of			
Linit 3	Flastic Re	havior of Laminates							
	Basic assi	imptions Strain-display	rement r	lations (Stress-str	ain relation	(03		
	of laver w	vithin a laminate Force	and mor	nent recu	Itant Go	neral load_			
	deformati	on relations Analysis o	f differen	t tynes of	laminate	s.			
Linit 4	Stress and	Failure Analysis of La	minates	- 19903 01	annate				
	Tupos of f	ailuras. Strass analysis	and cafet	v factors	for first p	ly failura of	<u> </u>		
	i ypes of I	anures, suress dildiysis	anu salet		o failurau				
	and ultim	ato laminates, ivilci Offiech	ianius oi p isign	ogressiv	e failure;	LIORIGZZIAG			
	anu uluma	are familiare familie, De	sign	oriale					
Tout Dealer		ogy for structural comp		ing Marth	nines -f	Composite			
Text BOOKS	L. ISAAC N	vi. Daniels, Uri Ishai, '	Engineer	ing Mech	iaincs of	composite			
	iviaterials'	, Oxford University Pre	ss, 1994.	Due 1		الربية المرام			
	Z. Bhagy	vali D. Agarwal, Lav	vrence J	. Brouth	iari, "An Sana lus	alysis and			
	Performan	nce of fiber composites	, Jonn W	ney and S	ouns, Inc.	1990.			
	3. Ivlatnev	vs, F. L. and Kawlings, R	. D., "Con	iposite M	aterials: I	Ingineering			
	3. Mathev	vs, F. L. and Rawlings, R ce", CRC Press, Boca Ra	. D. <i>,</i> "Con ton, 03.	nposite M	aterials: I	Engineering			

Reference	1. Madhujit Mukhopadhyay, "Mechanics of Composite Materials and	
Books	Structures", University Press, 04.	
	2. Mazumdar S. K., "Composaite Manufacturing – Materials, Product and	
	Processing Engineering", CRC Press, Boca Raton, 02.	
	3. Robert M. Jones, "Mechanics of Composite Materials", Taylor and	
	Francis, Inc., 1999.	

Audit Course 1 can be offered

Course Code	MED										
Course Title	Research Paper Writing and Ethics										
Course	On the completion of the course the student will be able to:										
Outcomes	CO1: Understand that how to improve your writing skills and level of readability										
	CO2: Lea	rn about what to writ	e in each	section							
	CO3: Und	lerstand the skills nee	eded whe	n writing	a Title						
	CO4: Ens	ure the good quality o	of paper a	nt very fir	st-time s	submission					
Examination	Theory										
Mode											
Assessment	Written	/ritten Assignment/ MSE MTP ESE EPR ABL/PBL									
Tools	Quiz	Project Work									
Weightage	10%	10%	25%	-	50%	-	5%				
Syllabus							СО				
							Mapping				
Unit 1	Writina										
	Planning	and Preparation. We	ord Order	. Breakir	ng un lo	ng sentences	CO1				
	Structurin	g Paragraphs and Se	entences	Being C	oncise a	nd Removing					
	Redundar	cv. Avoiding Ambiguity	and Vagi	Jeness Cla	arifving W	/ho Did What.					
	Highlighti	ng Your Findings. He	dging and	d Criticis	ing. Para	ophrasing and					
	Plagiarism	n. Sections of a Paper	r. Abstrac	ts. Intro	duction R	Review of the					
	Literature	. Methods. Results. Dis	cussion. C	Conclusion	ns. The Fi	nal Check. kev					
	skills are r	needed when writing a	Title. kev s	skills are r	needed w	hen writing an					
	Abstract, key skills are needed when writing an Introduction, skills needed										
	when writing a Review of the Literature, skills are needed when writing the										
	Methods, skills needed when writing the Results, skills are needed when										
	writing the Discussion, skills are needed when writing the Conclusions, useful										
	phrases, h	phrases, how to ensure paper is as good as it could possibly be the first- time									
	submissio	n	-								
Unit 2	PHILOSO	РНҮ									
	Introducti	on to Philosophy: Defin	ition, natu	re and Sco	ope, Conc	ept, Branches.	CO2				
	Ethics: de	efinition, moral philos	ophy, nat	ture of r	noral jud	gements and					
	reaction E	thics with respect to sci	ience and	research I	Intellectu	al honesty and					
	research	integrity Scientific mi	sconducts	: Falsifica	ation, Fal	brication, and					
	Plagiarism	n(FFP) Redundant p	oublicatior	ns: dupli	cate and	d overlapping					
	publicatio	ns, salami slicing Select	ive reporti	ing and m	isreprese	ntation of data					
Unit 3	ETHICS										
	Publicatio	n ethics: definition, in	troductior	n and imp	ortance	Best practices	CO3				
	/Standard	s setting initiatives and	guideline	s: COPE. \	NAME, et	c., Conflicts of					
	interest P	ublication misconduct:	definition	, concept	, problem	ns that lead to					
	unethical	behavior and vice ver	rsa, types	Violatior	n of publ	ication ethics,					
	authorshi	p and contributor ship.	Identific	ation of p	oublicatio	n misconduct,					
	complaint	s and appeals. Predato	ry publish	ers and jo	ournals						
Unit 4	Publishin	g									
	Open acce	ess publications and init	iatives SHI	EERPA/Ro	MEO onli	ne resource to	CO4				
	check pub	lisher copyright & Self -	- archiving	policies S	Software	tool to identify					
	predatory	publications developed	l by SPPU J	lournal fir	nder /Jour	nal suggestion					
	tools viz.J	ANE., Elsevier journal Fi	nder, Spri	nger Jour	nal Sugge	ster, etc.,					
	PUBLICAT	ION MISCONDUCT									
	A. Group I	Discussions									
	1. Subject specific ethical issues, FFP, authorship										

	2. Conflicts of interest	
	3. Complaints and appeals: examples and fraud from India and abroad	
	B. Software tools	
	Use of plagiarism software like Turnitin, Urkund and other open source software tools	
	Databases	
	1. Indexing databases	
	2. Citation databases: Web of Science, Scopus, etc.	
	Research Metrics	
	1. Impact Factor of Journal as per Journal Citation Report, SNIP, SJR, IPP, Cite	
	Score	
	2. Metrics: h-index, g index, i10 index, altmetrics	
Text Books	1. Goldbort R (2006) Writing for Science, Yale University Press (available on	
	Google Books)	
	2. Bird, A.(2006). Philosophy of Science.Routledge	
Reference	1. MacIntyre, Alasdair (1967) A Short History of Ethics. London	
Books	2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge	
	University Press	
	3. Highman N (1998), Handbook of Writing for the Mathematical Sciences,	
	SIAM. Highman'sbook .	
	4. Adrian Wallwork , English for Writing Research Papers, Springer New York	
	Dordrecht Heidelberg London, 2011	

Course Code	MED							
Course Title	CAD/CAN	1						
Course	On the co							
Outcomes	CO1: To learn about the applications and benefits of CAD.							
	CO2: To le	earn about various geor	netric trar	sformatio	ons.			
	CO3: To le	earn about various curv	es and mo	delling te	chniques			
	CO4: To le	earn about automation	& CAPP.	-	-			
Examination	Theory							
Mode								
Assessment	Written	Assignment/ Project	MSE	MTP	ESE	EPR	ABL/PBL	
Tools	Quiz	Work						
Weightage	10%	10%	25%	-	50%	-	5%	
Syllabus							CO Mapping	
Unit 1	Introducti	ion						
	Introducti	on to CAD, Design P	rocess, Ir	ntroductio	on to CA	M/ CIMS,	CO1	
	Importance	ce and Necessity of C	, AD, Appli	ications of	of CAD,	Coordinate		
	System (V	VCS, UCS, SCS)	, 11		,			
	2DTransfo	ormations						
	Introducti	on, transformation of p	oints and	line, 2-D	rotation,	reflection,		
	scaling an	d combined transforma	ition, hom	ogeneou	s coordin	ates.		
Unit 2	3-D Trans							
	3-D Trans	CO2						
	3-D sca							
	concatena							
	Wirefram							
	Geometri							
	Parametri							
	blending f	unctions, trimming and	l segmenta	ation of c	urve.			
Unit 3	Modelling	5						
	Surfaces I	Modelling					CO3	
	Surface e	ntities, Plane surface,	ruled su	irface, po	olygon ar	nd quadric		
	surface, s	surface of revolution,	Bi-Cubic,	Bezier Su	urface an	d B-Spline		
	surfaces.							
	Solids Mo	delling						
	Solid mod	dels and representation	on schem	e, bound	ary repre	esentation,		
	constructi	ve solid geometry, swe	ep represe	entation.				
Unit 4	Controls							
	Automati	on and Numerical Cont	rol				CO4	
	Introducti	on, fixed, programmab	le and fle>	ible auto	mation, t	ypes of NC		
	systems, I	MCU and other compo	nents, NC	part pro	grammin	g. Manual,		
	Computer							
	Manufact	uring Planning Systems	s and Proc	ess Conti	rol			
	CAPP - Co	mputer Integrated prod	uction pla	nning sys [.]	tems, MR	P, Capacity		
	planning,	Shop Floor control fact	ory, Data (collection	systems,	Computer		
	process	interface, types of	computer	process	s contro	l, process		
	monitorin	g, supervisory compute	er control.					
Text Books	1. Alava	a, C. R. CAD/CAM Conc	epts and A	Applicatio	ns. New [Delhi:PHI		
	Learn	ing. Print.						
	2. Groov	er M.P. and Zimmer, W	ICAD/ CA	M. New I	Delhi: Pra	ntice Hall.		
	Print.							

	3. Zeid I. <i>CAD/ CAM Theory and Practice</i> . New Delhi:Tata McGraw Hill.Print.
	4. ChirsMc and BrowneJimmie.CAD/CAM Principles, Practice &
	Manufacturing Management. Wesley. Print.
Reference	1. Groover Mikell P., Automation production systems and
Books	computer – integrated manufacturing. Prentice Hall of India.
	Ltd., 1998.
	2. Rao, P.N.Tewari, N.K. and Kundra, T.K. <i>Computer Aided</i>
	Manufacturing, New Delhi:Tata McGraw Hill, 2001.
	3. Koren Yoram, Computer integrated manufacturing systems. New
	Delhi:McGraw Hill, 1983
	4. Ranky Paul G. Computer integrated manufacturing. New
	Delhi:Prentice Hall, 1990

Specialization courses 1, 2, 3 Generic Elective 1, 2 as per respective baskets.

Course Code	MED								
Course Title	Mechani	Mechanical Engineering Lab-1 (Metal Cutting)							
Course	On the co	On the completion of the course the student will be able to:							
Outcomes	CO1: Το ι	understand the differ	ent lathe	operatio	ons.				
	CO2: Το ι	understand the differ	ent shape	er operat	ions.				
	CO3: Το ι	understand the millin	g and sha	iper oper	rations.				
E a sub a dia a	CO4: 10 t	understand the functi	oning of	drilling n	nachine.				
Examination	Practical								
Accessment	\\/rittop	Drojact Mark/Lab	МСГ	MTD	ГСГ				
Tools	Ouiz	Project Work/Lab	IVISE	IVITP	ESE	EPK	ABL/PBL		
Weightage	-	20%	-	30%		50%			
Svllabus		20/0		5070		5070	CO Mapping		
Content	List of experiments								
	1. Practice on Lathe: 05 Jobs (Jobs should cover various								
	1.	(h	,	C					
	Ia	the operations like o	centering	g, facing,	turning,	stepped			
	tu	ırning, parting, threa	ading, tap	per turni	ng, chan	nfering			
	aı	nd knurling)							
	2. P	ractice on Shaper: 0	1 Job (Slo	ot cutting	g)				
	3. P	ractice on milling ma	achine: 0	1 Job (Sl	ot cuttin	ıg)			
	1. D	ractice on Surface or	indor: 0	1 Joh (Cr	opting F	lat			
	т. 1	ractice on Surface gr	muer. 0.		cating r	lat			
	surface)								
	5. P	ractice on Drilling M	achine: ()1 Job (M	larking a	and			
	di	rilling operations)							

Course Code	MED						
Course Title	Mechanical Engineering Lab-2 (CAD/ CAM)						
Course	On the completion of the course the student will be able to:						
Outcomes	CO1: To understand the different lathe operations.						
	CO2: To understand the different shaper operations.						
	CO4: To understand the functioning of drilling machine						
Examination Mode	Practical						
Assessment	Written	Project Work/Lab	MSE	MTP	ESE	EPR	ABL/PBL
Tools	Quiz	Performance					,
Weightage	-	20%	-	30%		50%	-
Syllabus							CO Mapping
Content	List of exp	periments					
	The stud	ents will be required	to carry	out the f	ollowing	gexercises using	
	educatio	nal software (I-DEAS	, Pro-Eng nvironme	gineer, S nt by set	olla wo l ting drav	r K etc. j ving limits	
	1. 50				ung urav	···· ··	
	drawing units, naming the drawing, naming layers, setting line						
	types for different layers using various type of lines in engineering						
	drawing, saving the file with drawing extension.						
	2. La	ayout drawing of a bui	lding usir	ng differe	nt layer	and line colors	
	in	dicating all Building d	etails. Na	me the d	etails usi	ng text	
	сс	ommands, Make a title	Block.				
	3. T	o Draw Orthographic I	Projection	n Drawing	gs (Front	, Top and side)	
	of	f boiler safety valve giv	ving name	e the vari	ous com	ponents of the	
	Va	alve.					
	4. M	ake an Isometric dime	ensioned o	drawing	of a conn	ecting Rod using	
	is	ometric grid and snap					
	5. D	raw quarter sectional	isometric	view of a	a cotter j	oint.	
	6. D	raw different types of	bolts and	nuts wit	h interna	al and external	
	th	reading in Acme threa	ading star	ndards. Sa	ave the b	olts and nuts as	
	bl	ocks suitable for inser	tion.				
	7. D	raw 3D models by ext	ruding sir	nple 2D o	objects, d	imension and	
	na	ame the objects.					
	8. D	raw a spiral by extrud	ing a circl	le.			

Course Code	MED (Specialization Course 1)								
Course Title	Engineering Tribology								
Course	On the co	On the completion of the course the student will be able to:							
Outcomes	CO1: Design of surfaces in contact is a critical problem for mechanical engineering.								
	CO2: To d	leal with fundamentals	s of surfac	e contact	, friction,	wear and l	ubrication.		
	CO3: Stuc	lents will learn about B	earing Des	ign and R	olling Frid	ction.			
	CO4: Stud	lents will learn about th	ne Tests an	nd Instru	mentatio	n in Tribol	ogy.		
Examination	Theory								
Mode		Γ	I	I	I				
Assessment	Written	Assignment/Projec	MSE	MTP	ESE	EPR	ABL/PBL		
Tools	Quiz	t Work							
Weightage	10%	10%	25%	-	50%	-	5%		
Syllabus							CO Mapping		
Unit 1	Introduct	tion							
	friction, w	ear and lubrication, typ	es of engi	neering co	ontacts: c	onforming	CO1		
	and non-	conforming, Types of	motion:	rubbing,	sliding,	oscillating,			
	rolling, s	urface of interaction	, elastic	and pla	istic defe	ormations,			
	properties	s of materials, surface e	nergy and	flash tem	nperature	theory.			
	Friction:La	aws of sliding friction, o	concept of	fadhesio	n, Tabor's	s model of			
	elastic the	elastic thermo friction, rolling friction, measurement of friction							
Unit 2	Wear and								
	Wear: Lav	ws of wear types of	wear such	n as adh	esive, de	clamation,	CO2		
	abrasive,	corrosive, fretting, ero	osive and	oxidative	e, Measu	rement of			
	wear and	friction in atmosphere a	and differe	ent enviro	nments, I	Prevention			
	and control	ol of wear and friction	in machin	es, wear	of cutting	tools and			
	dies, study	y of abrasion in grading	, lapping/	honing		6 1			
	Lubricatio	ns: Mechanism of I	ubrication	, Bound	ary, squ	eeze film			
	hydrodyna	amic and elasto hydro	odynamic	and hydr	ostatic li	ubrication,			
	plasto nyo	irodynamic lubrication,	SOlution o	t Reynold	is s equat	ion in two-			
	and three	-dimensional flow, pres	sure distri	DUTION 10	ad carryir				
		vid and Cas lubricants to	enicient o	hoir annli	in journa	ai bearing,			
llnit 2	Solid, Liqu	nu and Gas lubricants ty	/pes and ti	neir appli	Cations				
Unit 5	Docign of	boaring clearance in ior	urnal boar	ing minir	num film	thicknoss	CO3		
	sommar	field number oil gro	uillai beai	l flow o	foil in	avial and	005		
	circumfer	ential grooves cavitatio	n's and tu	rhulence i	in oil heai	rings Heat			
	generation	n and cooling or heari	ng hydros	tatic and	dynamic	and their			
	annlicatio	ns in machine tools I	Design of	air heari	ings and	other gas			
	hearings		0000011 01	un beun		other Bus			
	Revnold s	lin. Heathe cote concer	nt selectio	n of rolle	r bearing	and their			
	methods	of lubrication design as	pects and r	nodes of	bearing fa	ailures and			
	elasto hvo	rodvnamic lubrication.							
Unit 4	Tests and	Instrumentation in	Triboloav	,					
	Sliding frid	ction and wear abrasio	n test. roll	ling conta	ict and fa	tigue test.	CO4		
	solid part	icle and erosion test.	Corrosion	test Spec	cial instru	ments for	-		
	lubricant a	analysis such as optical a	and infrare	ed spectro	oscopy an	d infra-red			
	spectrosco	opy, atomic absorptio	on and er	mission s	pectrosco	opy, mass			
	spectrosco	opy, NMR spectroscopy	, X ray diff	raction ar	nd chrom	atographic			
	technique	s, Use of transducers	and inst	truments	in Tribo	logy- film			

	thickness measurement using modern techniques – Development of test rigs for Tribology research	
Text Books	 Gwidon, W. Stachowiah and Gwidon, W. Engineering Tribology, 2013. Print. Bhusan, Bharat. Principles and Application of Tribology, 1999. Print. Khonsari, and Booser Applied Tribology: Bearing Design and Lubrication, 2008. Print. 	
Reference	1.Srivastva, Sushil kumar. Tribology in Industries. 2001.Print.	

Course Code	MED (Specialization Course 1)								
Course Title	Advanced Fluid Dynamics								
Course	On the completion of the course the student will be able to:								
Outcomes	CO1: To understand the fundamental principles of materials, processes and manufacturing.								
	CO2: To g	CO2: To gain knowledge of various manufacturing processes and related technical analysis.							
	CO3: To a	CO3: To apply the various manufacturing processes in engineering applications.							
	CO4: To evaluate the importance of economic considerations in the selection of								
	manufacturing processes								
Examination	Theory								
Mode		1			-	-	1		
Assessment	Written	Assignment/ Project	MSE	MTP	ESE	EPR	ABL/PBL		
Tools	Quiz	Work							
Weightage	10%	10%	25%	-	50%	-	5%		
Syllabus							CO Mapping		
Unit 1	Governing	g equations in Fluid Dy	namics						
	Review of	Basic Concepts and Flu	id Propert	ies: Basic	law of Flu	id Motion,	CO1		
	Internal s	stresses and external	forces or	n fluid el	ements,	Review of			
	Concepts	of Kinematics of fluid	motion,	vorticity,	circulatio	n, velocity			
	potential	and stream function, ir	rotational	flow.					
	Governing	g equations in Fluid D	ynamics:	Derivatio	n of Cont	inuity and			
	Momentu	m equations using	integral	and diff	ferential	approach,			
	dimensior	less form of governing	g equation	is, special	forms of	governing			
	equations, integral quantities.								
Unit 2	Exact Solu								
	Exact Sol	CO2							
	parallel flo								
	Flow: Kel	vin's theorem, Irrotat	tional flow	w, Strear	n functio	on-vorticity			
	approach.								
Unit 3	Boundary	layers							
	Laminar B	oundary layers: Bounda	ary layer e	quations,	flow ove	r flat plate,	CO3		
	Momentu	m integral equation fo	r boundar	y layer, a	pproxima	te solution			
	methodol	ogy for boundary layer	equations	5.					
	Turbulent	t Flow: Characteristics	of turbu	lent flow	, laminar	turbulent			
	transition	, time mean motion an	nd fluctuat	ions, der	ivation of	governing			
	equations	for turbulent flow, s	hear stres	s models	s, univers	al velocity			
	distributio	on							
Unit 4	Experime	ntal Techniques	-						
	Experimen	ntal Techniques: Role o	fexperime	ents in flu	id, layout	of fluid	CO4		
	flow expe	riments, sources of erro	or in exper	riments, c	lata analy	sis, design			
	of experin	nents, review of probes	and trans	sducers, li	ntroductio	on to Hot			
	wire Anen	nometry, Laser Doppler	r Velocime	etry and P	article Im	age			
	Velocimet	ry							
Text Books	I. Fluid M	lechanics for Engineer	rs, A Grad	uate Tex	tdook, M	einhard T.			
	Schobell'i	, 2010. 	onta /101	00/222/	1200 /Eh	id Maaba			
	nics for E	ww.peu onet.ir/uocum	ients/101	.00/2324	r299/FIU	iu_mecha			
	2 Advance	red Fluid Mechanics M	/ P Graph	ne] 2007					
	www.eng	matl.com/engineerii	ng-mecha	nics/2007	-advance	d-fluid-			
	mechanic	S			aurunot				
	3. White,	F.M. 1991 Viscous Flui	d Flow (s	<u>eco</u> nd ed	<u>itio</u> n), Mo	:Graw Hill.			

	 4. Boundary Layer Theory, H. Schlichting. Sherman, F.S. 1990 Viscous Flow. McGraw Hill. 5. McCormack, P.S. & Crane, L.J. 1973 Physical Fluid Dynamics, Academic Press 	
Reference Books	 Muralidhar and Biswas, Advanced Engineering Fluid Mechanics, , Alpha Science International, 2005 Irwin Shames, Mechanics of Fluids, , McGraw Hill, 2003 Fox R.W., McDonald A.T , Introduction to Fluid Mechanics, John Wiley and Sons Inc, 1985 Pijush K. Kundu, Ira M Kohen and David R. Dawaling, Fluid Mechanics, Fifth Edition, 2005 	

Course Code	MED (Specialization Course 1)							
Course Title	Metal Casting and Forming							
Course	On the co	On the completion of the course the student will be able to:						
Outcomes	CO1: To Understand the various casting parameters and molding methods.							
	CO2: Lear	rn about casting proc	esses and	furnace	s.			
	CO3: To l	Jnderstand different	forming p	rocesses	5.			
	CO4: To c	leal with classificatior	n of formi	ng proce	esses.			
Examination	Theory							
Mode								
Assessment	Written	Assignment/	MSE	MTP	ESE	EPR	ABL/PBL	
Tools	Quiz	Project Work						
Weightage	10%	10%	25%	-	50%	-	5%	
Syllabus							CO Mapping	
Unit 1	Casting a	ind Moulding Method	ds					
	General,	Classification of man	ufacturin	g proces	ses, vari	ous kinds	CO1	
	of Produ	ction System, Compu	iters in m	anufacti	uring, Se	lection of		
	manufact	turing process.			U,			
	Introduct	ion, advantages, limi	itations a	nd appli	cations of	of casting		
	process, (Classification of castin	ig process	, Stepsi	nvolved	in casting,		
	Pattern t	ypes, Allowances for	pattern,	pattern,	materia	als, colour		
	coding ar	nd storing of patterns	. Moldin	g metho	ds and F	Processes,		
	Moulding	g materials, Molding s	ands and	its ingre	dients, F	Properties		
	of moulding sand, Cores, Sand casting defects. Design of castings.							
Unit 2	Castina n	rocesses and Furnace	-					
	Pressures	s die casting. Perm	anent m	ould ca	sting. C	entrifugal	CO2	
	casting. F	Precision investment	casting a	nd its tv	nes. Clea	aning and	001	
	finishing	of casting. Inspection	n and tes	ting of a	asting. [Defects in		
	castings.	or occer						
	Selection	of furnace-crucibles	oil fired	furnaces	. electric	: furnaces		
	cupola,	calculation of cup	ola char	ges, ho	t blast,	cupola-		
	Degasific	ations. inoculation-p	ouring e	auipmei	nt. Insp	ection of		
	castings.	Need-Areas for r	nechaniz	ation-Tvi	oical la	vout-sand		
	reclamati	ion techniques-mate	rial hand	lling, po	llution o	, control in		
	Foundry,	Computers in casting	process.	0, 1				
Unit 3	Forming	. 0	-					
	Metallur	gical aspects of metal	forming	slip, twi	ning med	chanics of	CO3	
	plastic o	deformation effects	of te	mperatu	re, stra	ain rate-		
	microstru	acture and friction ir	n metal f	orming,	yield cri	iteria and		
	their sig	nificance-classificatio	on of m	ietal fo	rming p	processes,		
	Principle	classification equipm	ient, tool	ing proc	esses, pa	arameters		
	and calcu	lation of forces durin	g forging	and rolli	ng proce	sses, Ring		
	compress	sion tests, Post form	ing heat	treatmei	nt, Defeo	cts (cause		
	and rem	edy) applications. Cla	assificatio	n of ext	rusion p	processes,		
	tool, equ	ipment and principle	e of thes	e proce	sses, inf	luence of		
	friction, E	xtrusion force calcula	ition, Defe	ects and	analysis:	Rod/wire		
	drawing-	tool, equipment and	principle	of proce	sses defe	ects, Tube		
	drawing	and sinking proce	esses-Ma	nnesmar	nn proc	esses of		
	seamless	pipe manufacturing.						
Unit 4	Classifica	ition of forming proce	ess					

	Classification conventional and HERF processes Presses types and selection of presses, formability of sheet metals, Principle, process parameters, equipment and application of the following processes. Deep drawing, spinning, stretch forming, plate bending, press brake forming, Explosive forming, electro hydraulic forming, magnetic pulse forming. Super plastic forming, electro forming- fine blanking, P/M forging-Isothermal forging-high speed, hot forging high velocity extrusion.	CO4
Text Books	1.Raghuwanshi B.S. A Course in Workshop Technology. Vol. 1. New Delhi:	
	Dhanpat Rai. 10th Edition 2009. Print.	
	2.Taylor & Wulff, J. Foundry Engineering. Wiley Eastern Limited, 1993.	
	Print.	
Reference	1.Lindberg R.A. Processes and Materials of Manufacture. New Delhi:	
Books	Prentice Hall of India (P) Ltd. 1996. Print	
	2. Jain Kalpak. Manufacturing engineering and Technology. Edition III.	
	Addison Wesley Publishing Co. 1995. Print	
	3.William and Robert M. Caddel. Metal forming. Prentice Hall Publishing	
	Co.1990. Print.	

Course Code	MED (Specialization Course 1)							
Course Title	Quality Control and Reliability							
Course	CO1:To impart knowledge about the concepts of quality and quality control.							
Outcomes	CO2:To make students understand the concepts of acceptance sampling.							
	CO3:To make students understand the concepts of TQM.							
	CO4:To	impart knowledge a	about relia	ability.				
Examination	Theory							
Mode			I				Γ	
Assessment	Written	Assignment/	MSE	MTP	ESE	EPR	ABL/PBL	
Tools	Quiz	Project Work						
Weightage	10	10	25		50		5	
	1	Syllabus					CO Mapping	
Unit 1								
	Introduction	1			_	6 11.	CO1	
	Concept of	quality, Need, Facto	or influend	cing qualit	y, Types (of quality,		
	Quality cont	trol, Cost of qualit	y control,	Quality a	ssurance,	Benefits,		
	Modern c	oncept, Inspectio	on and	quality	control,	Quality		
	characterist	ics, Quality circles v	vith case s	tuay.				
	Statistical C	oncepts and Contro	or Charts					
	Review of f	undamental statis	tical conc	ept, Freq	uency dis	stribution,		
	Central tend	dency, measures o	of dispersion	on, Proba	bility dist	ributions,		
	statistical qu	uality control, Theo	ory of cont	rol charts	, Control	charts for		
	variables an	d attributes (\bar{x} , R, F	P, np and C	C chart), th	neir advan	itages and		
	disadvantag							
Unit 2	A	602						
	Acceptance							
	Characterist	i, Auvantages	anu r's and cor	Disauvani Sumor ⁱ s i	ages, rick Auali	ity indices		
	for accentar	ice sampling plans	Types of	samnling	Plans-sing	le double		
	sequential	sampling plan. Sar	noling pla	in for val	riables, c	ontinuous		
	sampling pla	ans. Skip lot samplir	ng plans. C	hain sam	oling plan			
Unit 3	1	, - 1	<u> </u>		0 1			
	Total Qualit	y Management					CO3	
	Introduction	Concept of Total	l auglitu (Quality for	nation da	nloumont		
	tools for c	n, Concept of Total	improvor	Quality IU		tudy ISO		
		amily of standards			and its co	mparison		
	with ISO sys	tom	, JIA SIGILIO	. DIVIAIC		mpanson		
Unit 4	With ISO Sys							
	Reliability						CO4	
	Introduction	Factors affecting	Reliahility	Failure a	nd its type	es Failure	04	
	curve, reliat	ility and its manag	ement. M	TBF. MTT	F. Relatio	nship b/w		
	reliability fa	ilure rate and M	TBF, and	its charac	teristics	reliability		
	predictions	and analysis. Syster	n reliabilit	y analysis.	, Reliabilit	y test and		
	life testing p	lans, Types of test,	Maintaina	bility and	Availabil	, ity.		
Text Books	1.Mitra, Am	itava. Fundamenta	I of Quali	, ty Control	and Imp	rovement.		
	Wiley. 2	016. Print.	-					
	2. Sharma,	D.D. Total Quality	<i>Control.</i> N	ew Delhi:	Tata Mc	Graw Hill.		
	2011. Print.							

Reference	1)	Harrism and Wadsworth, M. Modern Methods for Quality Control	
Books		and Improvement. Wiley. 2002. Print.	
	2)	Grant, E. and Leavenworth R. Statistical quality control, New	
		Delhi: Tata McGraw Hill. 2008. Print.	
	3)	Ebeling. An introduction to reliability and maintainability	
		engineering. New Delhi: Tata McGraw Hill. 2004. Print.	
	4)	Raju, N.V.S. Industrial Engineering and Management. Cengage	
		Learning. 2013. Print.	

Course Code	MED (Specialization Course II)							
Course Title	Finite Element Method							
Course	On the co	On the completion of the course the student will be able to:						
Outcomes	CO1: Stud	CO1: Students will learn about the basic concepts of FEM.						
	CO2: To p	rovide the knowledge o	of one, two	o dimensio	onal and a	axisymmetri	c Problems in FEM.	
	СО3: То р	CO3: To provide the information of static, scalar field and dynamic problems.						
	CO4: To k	now about the dynam	nic consid	lerations	and con	nputer imp	lementations.	
Examination	Theory							
Mode		1	1	1		1		
Assessment	Written	Assignment/Projec	MSE	MTP	ESE	EPR	ABL/PBL	
Tools	Quiz	t Work						
Weightage	10%	10%	25%	-	50%	-	5%	
Syllabus							CO Mapping	
Unit 1	Introduct	tion						
	Introducti	on: Historical Backgro	und, Mat	hematica	l modelir	ng of field	CO1	
	problems	in engineering, governi	ing equati	ons, discr	ete and o	continuous		
	models,	boundary and initial	value pro	oblems,	Weighteo	d Residual		
	Methods,	Variational formulation	on of bou	indary va	ilue prob	olems, Ritz		
	technique	, Basic concept of Finite	e Element	Method.				
Unit 2	Dimensio	onal Problems						
	One Dime	ensional Problems: One	e dimensio	onal seco	nd order	equation,	CO2	
	discretizat	tion, linear and higher	order ele	ements, d	derivatior	n of shape		
	functions,	Stiffness matrix and	force vec	tors, asse	embly of	elemental		
	matrices,	solution of problems fro	om solid n	nechanics	•			
	Two Dime							
	Triangle (. The Four						
	Node Qua	drilateral, Numerical In	tegration,	Higher O	rder Elem	nents; Nine		
	Node Qua	drilateral, Eight Node C	Quadrilate	rals, Six N	ode Trian	gle.		
Unit 3	Beams							
	Introducti	on, Finite element i	modelling	formula	tion, loa	ad vector,	CO3	
	boundary	considerations, shear t	force and	bending	moment,	beams on		
	elastic sup	oports.						
	Scalar Fiel	d Problems: Introductio	on, Steady	-state hea	at transfe	r, Torsion		
Unit 4	Dynamic	Considerations						
	Dynamic	Considerations: Elemer	nt Mass N	Aatrices,	Evaluatio	n of Eigen	CO4	
	Values and	d Eigen Vectors.				_		
	Computer	Implementation:	Introduct	ion; Co	mputer	Program		
	Organizat	ion for Calculation of	System N	Matrices,	Introduc	tion to FE		
	software.							
Text Books	1. Chandr	upatia, T.R and Belegun	du A.D, T.	S. Introdu	iction to	Finite		
	Elements	in Engineering, New De	Ini: Pearso	on Educat	ion: 2015	. Print.		
	2. Alavala	, C. K.FINITE Element Me	ethods, Ne	ew Delhi:	HI Learn	ing Pvt.		
	Ltd.2015.	rint.				n ~ D: +		
	3. IVIOave	ni, S. Finite Element An	aiysis, Nev	w Deini: P	HI Learni	ng PVt.		
Deferrer	Lta. 2015.	Print.						
Reference	1. Seshu,		ement Ana	iiysis, Nev	v Deini: P	HI		
BOOKS	Learning H	vi. Lta. 2015.Print.	+h o [::+ ·			New Delle		
	2. Keday,	J. IN.AN INTRODUCTION TO	the Finite	Element	vietnoa,	ivew Deini:		
	IVICGraw F	illi Education.2015. Prir	10					

Online		
Resources	http://nptel.ac.in/courses/112104116/	

Course Code	MED (Specialization Course II)							
Course Title	Modelling of I C Engine							
Course	On the completion of the course the student will be able to:							
Outcomes	CO1: To impart the basic engine design skills to the learners such that there is seamless							
	trans	ition to advanced desig	n concep	ts.				
	CO2: A b	asic understanding of	several	types of	engine n	nodels that	: will include zero	
	dime	nsional thermodynami	ic model,	one dim	nensional	and multi-o	dimensional, single	
	zone,	, two zone etc models	_					
	CO3: Fuel	spray behavior and th	e perform	ance eva	luation an	d emission	standards for such	
	mode	eled engines						
	CO4: Stud	dents will develop mod	lels and si	mulate ti	hem for di	esel engine	e petrol engine, gas	
F	engir	ie						
Examination	Theory							
Assessment	\\/rittop	Accignment/Droject	МСГ	MTD				
Assessment	written Ouiz	Assignment/ Project	IVISE	IVITP	ESE	EPK	ABL/PBL	
100IS	Quiz		250/		E 00/		E 0/	
Syllabus	10%	10%	25%	-	50%	-	5%	
Syllabus								
Unit 1	Fundame	ntals						
	Governing	g equations. Equilibriu	um chart	s of con	nbustion	chemistry.	CO1	
	chemical	reaction rates, and ap	proaches	of mode	ling, mode	el building		
	and integ	ration methods, gas	exchange	through	valves, e	ngine and		
	porting geometry, exhaust gas recirculation, valve lift curves.							
Unit 2	Thermody	602						
	Single 20	1 models,	02					
	correlatio							
	correlations, ignition delay, internal energy estimations, two zone model,							
Unit 3	Fuel snrav	hehavior	515.					
	Fuel inie	ction, spray structure.	fuel ato	mization	droplet t	urbulence	CO3	
	interactio	ns. droplet impingem	ent on v	valls. Mo	odeling of	f charging	000	
	system: C	constant pressure and	pulse tur	oo chargi	ng. compr	ressor and		
	turbine m	aps, charge air cooler		0	0, 1-			
Unit 4	Mathema	tical models of SI Enai	nes					
	Simulation	n of Otto cycle at full th	rottle na	rt throttle	and sune	rcharged	CO4	
	conditions	s. Progressive combusti	on. Autoi	nition m	odeling, si	ngle zone		
	models, m	hass burning rate estim	ation, SI E	ngine wit	h stratified	d charge.		
	Friction in	pumping, piston assen	nbly, bear	ings and v	valve train	etc.		
	friction es	timation for warm and	warm up	engines				
Text Books	1.Ramoss.	.A.L., "Modelling of Int	ernal Cor	nbustion	Engines P	rocesses",		
	McGraw H	ill Publishing Co., 1992						
	2.Ganesar	n.V. "Computer Simula	tion of sp	ark igniti	on engine	process",		
	Universitie	es Press (I) Ltd, Hyderba	ad, 1996.					
Reference	1. Haywoo	od, "I.C. Engines", Mc G	raw Hill.					
Books	2. Ramos	J (1989) Internal Com	bustion E	ngine Mo	odeling. He	emisphere		
	Publishing	g Company						
	3. C. D. Ra	kopoulos and E. G. Gia	koumis, "I	Diesel Eng	gine Transi	ent		
	4. Operati	on Principles of Operat	tion and S	imulatior	n Analysis"	, Springer,		
	2009.							

5. V. Ganeshan, "Internal Combustion Engines", Tata McGraw Hill, New
Delhi, 1996.
6. P.A. Lakshminarayanan and Y. V. Aghav, "Modelling Diesel
Combustion" Springer, 2010
7. Bernard Challen and Rodica Baranescu, "Diesel Engine Reference
Book" ButterworthHeinemann, 1999

Course Code	MED (Specialization Course II)							
Course Title	Welding	Fechnology						
Course	On the co	mpletion of the course	the stude	nt will be	able to:			
Outcomes	CO1: This	CO1: This course is designed to provide students with an overview of a wide variety of						
	manufacturing processes for fabricated of engineering materials.							
	CO2: The students will learn principles, operations and capabilities of various metal joining							
	proc	processes.						
	CO3: To d	CO3: To deal with welding power sources.						
	CO4: To get the knowledge of metal transfer and melting rate.							
Examination	Theory							
Mode								
Assessment	Written	Assignment/ Project	MSE	MTP	ESE	EPR	ABL/PBL	
Tools	Quiz	Work						
Weightage	10%	10%	25%	-	50%	-	5%	
Syllabus							CO Mapping	
, Unit 1	Introduct	ion					11 0	
	Basic class	sification of welding pro	cesses. w	eld ability	. weld the	ermal cycle.	CO1	
	metallurg	v of fusion welds, solidi	fication m	echanism	and micr	ostructural		
	products	in weld metal, epitaxi	al. cellula	r and de	ndritic so	lidification.		
	metallurg	ical changes in weld	, metal,	phase tr	ansforma	tion during		
	cooling o							
	microstru							
	crystalliza							
	alloving elements on welding of ferrous metals							
Unit 2	Welding Arc and Coated Electrodes							
	Arc efficie	CO2						
	blow, ele							
	maintena	nce, role of electrode	e polarity	on arc	behaviou	ur and arc		
	stability, a	analysis of the arc.						
	Electrode	coatings, classification	of coati	ngs of ele	ectrodes	for SMAW,		
	SAW fluxe	es, role of flux ingredier	nts and sh	ielding ga	ases, class	sification of		
	solid and							
Unit 3	Fusion W							
	Manual r	metal arc welding MN	/IAW, GT	AW, GM	AW, FCA	W and CO	CO3	
	welding p	rocesses, plasma arc, s	ubmergeo	d arc weld	ding, elec	tro gas and		
	electro sla	ag welding, analysis of t	he proces	s.				
	Arc weld	ing power sources bas	sic charte	rs tics of	power s	sources for		
	various ar	c welding processes, du	ity cycles,	AC, DC w	elding pov	wer source,		
	DC rectifie	ers, thyristor controlled	rectifiers,	transisto	rized uni	ts, inverter		
	systems.	Arc length regulation in	mechaniz	ed weldi	ng proces	ses		
Unit 4	Metal Tra	nsfer and Melting Rate	2					
	Mechanis	m and types of me	etal trans	fer, forc	es affec	ting metal	CO4	
	transfer,	modes of metal trans	fer, meta	l transfer	in vario	us welding		
	processes	s, effective of polarity of	n metal tr	ansfer an	d melting	rate.		
	Theory ar	nd mechanism of solid s	state weld	ling, Tech	iniques ar	nd scope of		
	friction w	elding, diffusion weldin	g, cold pr	essure we	elding and	d ultrasonic		
	welding.	Technique, scope and	applicatio	on of the	electron	beam and		
	laser weld	ling processes						
Text Books	1.Parmar,	, R.S. Welding Engineer	ring & Te	chnology.	New De	lhi: Khanna		
	Publisher	s.1997. Print.						

	2.Nandkarni, S.V. Modern Arc Welding Technology. New Delhi: Oxford & IBH publishing Co.1996.Print	
Reference Books	 Cary, Howard, Modern Welding Technology. Prentice Hall, 1998.Print. Richard, L. Welding & Welding Technology. Tata McGraw Hill. 2001. Print. Bohnart, E.R.Welding:Principles & Practices. Tata McGraw Hill.2014. Print. 	

Course Code	MED (Specialization Course II)							
Course Title	Material Management							
Course	CO1: Studer	nts will learn about	the role of	^f material	managem	nent in busi	ness.	
Outcomes	CO2: Studer	nts will learn about	the conce	pts of inve	entory ma	nagement.		
	CO3: Studer	nts will learn about	the conce	ots of traf	fic and sto	ore manage	ement.	
	CO4: Studer	nts will also be fami	liarized wi	th differe	nt purcha	sing and pr	ocurement policies	
	and procedu	ures.						
Examination	Theory							
Mode								
Assessment	Written	Assignment/	MSE	MTP	ESE	EPR	ABL/PBL	
Tools	Quiz	Project Work						
Weightage	10	10	25		50		5	
		Syllabus					CO Mapping	
Unit 1								
	Role of Mat	erial Management	in Busines	5S			CO1	
	Types of ma	terials organizatior	ns (Purcha	sing, Proc	urement,	Materials		
	managemer	nt, Physical Di	istribution	Mana	gement,	Logistic		
	Managemer	nt)						
	Fundament	al of Purchasing an	d Procure	ment				
	Importance	of supplier, Factor	ors in su	oplier sel	ection, S	ources of		
	supplier information, Long-term, strategic materials planning,							
	Evaluating p	otential suppliers,	post-selec	tion probl	ems.			
Unit 2								
	Inventory M	lanagement					CO2	
	Function an	d definition of inve	entories, A	BC Conce	ept, Deper	ndent and		
	Independen	m (Cyclic						
	Ordering Sy	stem, Order Point S	System, Ma	aterial Red	quiremen	t Planning		
	System), De	termination of Orde	er Quantit	y, EOQ Co	ncept, Ap	plications		
	and Limitati	ons of EOQ, Determ	nination of	order poi	int and saf	fety stock,		
	Capital Foui	nment						
	Differences	in procurement	of canital	lequinm	ent Proc	edure of		
	purchase of	capital equipment.	Purchasir	ng's role ir	n canital e	auinment		
	procuremer	it. Techniques of ec	onomic ar	alvsis	i capital c	quipinent		
Unit 3	p							
	Traffic						CO3	
	Carrier se	lection and rou	ting (Shi	pping te	erms, N	lodes of		
	transportati	on, Types of carrie	rs, Regula	tion and	Deregulat	tion, Class		
	rates and Co	ommodity rates), Lo	ss and dan	nage of fri	ight, Trans	sportation		
	cost reducti	on.						
	Receiving a	nd Stores						
	Responsibili	ties of receiving a	and stores	s, receivir	ng proced	dures and		
	paperwork,	Identification of	materials,	Stores s	ystems, S	Storing of		
	materials, N	1ethods and equipn	nent's, Aut	tomated v	varehousi	ng, layout		
Unit 4								
	Policies and	Procedures					CO4	
	Centralizatio	on of purchasing,	Policies a	affecting	vendors,	Ethics in		
	purchasing							
	General Pro	curement Procedu	res					

	Definition, Description and Transmission of need, Supplier selection	
	and order preparation, Order follow up, Receipt and inspection,	
	invoice audit and order completion	
	Purchasing Records	
	Open orders, closed orders, purchase log, Commodity records,	
	Supplier records, and Contract and tool records	
	Handling "rush" orders	
	Handling "small" orders	
Text Books	1Raju, N.V.S. Industrial Engineering and Management. New Delhi:	
	Cengage Learning. Print.	
	2Chunawala. Production and Operation Management. New Delhi:	
	Himalaya Publication. Eighth Edition, 2013. Print.	
Reference	1Donald W. Dobler. Purchasing and materials management. TMH.	
Books	Fourth Edition. Print.	
	2Nair. Purchasing and materials management. New Delhi: Vikas	
	Publishers. Print.	

Course Code	MED (Specialization Course III)									
Course Title	Advanced Materials									
Course	On the co	ompletion of the cour	se the stu	ıdent wil	l be able	to:				
Outcomes	CO1: Stuc	lents will learn about th	ne nano m	aterials						
	CO2: Stuc	lents will learn about th	ne Compos	ite mater	ials					
	CO3: Stuc	lents will learn about th	ne Plastic r	naterials						
	CO4: Stuc	lents will learn about th	ne design a	and devel	opment o	of composite	e materials			
Examination	Theory									
Mode		ſ	1		1	1				
Assessment	Written	Assignment/Projec	MSE	MTP	ESE	EPR	ABL/PBL			
Tools	Quiz	t Work								
Weightage	10%	10%	25%	-	50%	-	5%			
Syllabus							CO Mapping			
Unit 1	Nano ma	iterials								
	Carbon n	anotubes, structure a	and prope	erties, ch	emistry	of carbon	CO1			
	nanotube	s, graphite whiskers,	cones an	d polyhe	dral crys	tals, nano				
	crystalline	e diamond, carbide	derived	d carbo	n nano	tubes in				
	multifunct	tional polymer nano cor	mposites,	nano stru	ctured m	aterials for				
	field emiss	sion devices, nano textu	ired carbo	ns for eleo	ctrochem	ical energy				
	storage.									
Unit 2	Composi	Composites								
	Introducti	interface,	CO2							
	micromec	ep, wear,								
	applicatio									
	foam etc.									
Unit 3	Plastics									
	Introducti	(molecular	CO3							
	viewpoint),microstructures in po	olymers, m	echanica	l propert	ies (macro				
	view poir	nt) chemical and phy	sical prop	perties (r	nacro vie	ew point),				
	designing	with plastics, thermore	plastic ma	terials (co	ommodity	y plastics),				
	thermopla	astic materials(enginee	ering plast	tics), the	rmo set	materials,				
	elastomer	ic (rubber) materials,	extrusior	n, injectio	on mould	ding, blow				
	moulding,	thermoforming, rot	ational n	noulding,	casting,	foaming,				
	compressi	ion moulding, transfe	r mouldi	ng, and	related	processes,				
	radiation,	finishing, adhesion	and	assembly	operat	ions and				
	managem	ent, Environmental asp	ects of pla	istics.						
Unit 4	Developr	nent of Advanced Co	mposite l	Vlaterial	S					
	Micromed	hanical behaviour of a	a lamina,	Mechanie	cs of mat	terials and	CO4			
	elasticity a	approach to stiffness, Co	omparison	of appro	aches, Me	echanics of				
	materials	approach to strength. F	-atigue be	haviour ir	n compos	ites, Effect				
	of holes in	i laminates, Fracture m	echanics v	of holes in laminates, Fracture mechanics with reference to composites,						
	+									
1	transverse	e shear effects, Post cui	ring shape	s of un sy	mmetric	laminates,				
	Environmo	e shear effects, Post cui ental effects.	ring shape	s of un sy	mmetric	laminates,				
	Environme Design of	e shear effects, Post cui ental effects. Composite Materials:	Introduct	s of un sy tion to d	esign of	composite				
	Environme Design of structures	e shear effects, Post cui ental effects. Composite Materials: s, structural design, mat	Introduct	s of un sy tion to d	esign of	composite selection,				
	Environme Design of structures laminate	e shear effects, Post cui ental effects. Composite Materials: s, structural design, mat joints, Design require	Introduct erial select ements a	s of un sy tion to d tion, con nd desig	esign of figuration failure	composite selection, scriteria,				
	Environme Design of structures laminate optimizati	e shear effects, Post cu ental effects. Composite Materials: , structural design, mat joints, Design require on concepts, design	Introduct Introduct cerial selec ements a analysis	s of un sy tion to d tion, con nd desig philosop	esign of figuratior n failure hy for	composite selection, s criteria, composite				
Tout Dools	Environme Design of structures laminate optimizati structures	e shear effects, Post cu ental effects. Composite Materials: s, structural design, mat joints, Design require on concepts, design	Introduct Introduct cerial selec ements a analysis	s of un sy tion to d tion, con nd desig philosop	esign of figuratior n failure hy for	composite selection, composite composite				
Text Books	Environme Design of structures laminate optimizati structures 1Sehgal, L	e shear effects, Post cu ental effects. Composite Materials: s, structural design, mat joints, Design require on concepts, design s. indberg R.A. Materials,	Introduct erial select ements a analysis their Natu	s of un sy tion to d tion, con nd desig philosop ure, Prope	esign of figuratior n failure hy for erties and	composite selection, composite composite				

	2Polmear, I. J. Light alloys: Metallurgy of Light Metals. Arnold. 3rd	
	Edition. 1995. Print.	
Reference	1Robert, M. Mechanics of Composite Materials. Print.	
Books		

Course Code	MED (Specialization Course III)						
Course Title	Design o	f Solar and Wind Syste	ms				
Course	On the co	ompletion of the course	e the stud	ent will b	e able to:	:	
Outcomes	 CO1: Analyze the characterization of electricity generation from the wind and its integration issues. CO2: Identify suitable power electronic converter for wind energy systems. CO3: Importance of isolated wind systems and its impact on power system. 						
	CO4: Der issu	nonstrate the knowled es.	ge of phy	sics of so	lar powei	r generation	and the associated
Examination Mode	Theory						
Assessment Tools	Written Quiz	Assignment/ Project Work	MSE	MTP	ESE	EPR	ABL/PBL
Weightage	10%	10%	25%	-	50%	-	5%
Syllabus							CO Mapping
Unit 1	Nuclear e	energy					
	Conventi	onal sources of energy,	, Nuclear,	Alternati	ve energy	y sources.	CO1
Unit 2	Solar energy						
	Solar Rad	diation-estimation, pre	diction 8	measur	ement, S	olar energy	CO2
	utilizatio	n,					
	Performance of Solar flat plate collectors, concentrating collectors,						
	thermal storage						
Unit 3	Wind energy						
	Wind ene	ergy, Direct Energy con	version- F	V, MHD			CO3
Unit 4	Fuel cells	5					
	Fuel cells, thermionic, thermoelectric, Biomass, biogas, hydrogen, Geothermal						CO4
Text Books	 Thomas Ackermann, Wind power in Power Systems, John Willy and Sons Ltd., 2005. Siegfried Heier, Grid integration of wind energy conversion systems, John Willy and Sons Ltd., 2006. 						
Reference Books	1. D.Y. Goswami, F. Kreith and J.F. Kreider, "Principle of Solar Engineering", Taylor and Erancis 2000						
	2. Sukha Ltd., Nev 3. Bansa 4. J.F. Kre 5. J.A. D Processe 1991	otme S.P., "Solar Energy v Delhi, 1994. l and othes, "Non-Conv eider, F. Kreith, "Solar I Puffie and W.A. Beckn es", John Wiley,	gy", Tata ventional Energy H nan, "So	McGraw Energy S andbook' lar Engir	Hill Pub Sources". ", McGrav neering c	olishing Co. w Hill, 1981 of Thermal	

Course Code	MED								
Course Title	Non –Des	structive Testing							
Course	On the co	mpletion of the course	the stude	nt will be	able to:				
Outcomes	CO1: To u	nderstand the basics of	f NDT.						
	CO2: To b	e familiar with Visual Ir	spection a	and Penet	trant Test	ing.			
	CO3: To ki	now about the Magnet	ic Particle	Testing a	nd Radiog	graphic Exan	nination.		
	CO4: To ge	et the knowledge of Ul	trasonic M	ethods a	nd Eddy C	Current Testi	ng		
Examination	Theory								
Mode									
Assessment	Written	Assignment/	MSE	MTP	ESE	EPR	ABL/PBL		
Tools	Quiz	Project Work							
Weightage	10%	10%	25%	-	50%	-	5%		
Syllabus		•			•		CO Mapping		
Unit 1	Introduct	tion to NDT							
	Non-dest	ructive testing, Scope	of non-de	structive	testing, A	Advantage	CO1		
	of non-o	destructive testing,	destruct	ive met	thods of	f testing,			
	Comparis	on between non-de	estructive	and d	estructiv	e testing,			
	Common	NDT methods, Flaws	and defe	cts, Appl	ications,	Attractive			
	use of NI	DT in detecting surfa	ce cracks	and bor	nd streng	gth due to			
	failure fat	failure fatigue.							
Unit 2	Visual Ins								
	Introduct	nspection,	CO2						
	Equipmen	nging test/							
	Hammer	in welding							
	defects, P	ntages and							
	limitation								
	Introduct	lards, Test							
	stations, i	onotronto							
	Charactor	ristics of good population	IIS OI D	PI, Iyp Ionors ar	es of p	oc Quality			
	and proc	ass control Health a	nd Safety	and Pr	acautions	in liquid			
	nenetrant								
	testing Le	penetrant							
	נכזנווב, בכמג נכזו, בעצוט וועטו בזכבות פרובנו מוול נכזו.								
Unit 3	Magnetic	Magnetic Particle Testing and Radiographic Examination							
	Introduct	ion, Principles of n	nagnetic	particle	testing,	Scope of	CO3		
	magnetic	particle testing, Bas	sic terms	associat	ted with	magnetic			
	materials	, Classification of	magnetic	materia	als, Dom	nains and			
	hysteresis	s, Magnetic field orien	tation, M	ethods of	magneti	zation, DC			
	and AC n	nagnetization – Skin	Effect, Eq	uipment	s, Lights,	, Magnetic			
	Application	cator, resulig technic	lues, Auva	antages,	Disauvan	hages and			
	History o	f radiography Types	of radiati	one Raci	c nroner	tios V-rou			
	radiogram	hy principle and radi	or raulau	UIIS, Dasi	tered rad	liatione V			
	rav film	and accessories	Film inf	ernretat	ion and	viewing			
	radiogram	hs. Geometric pr	inciples	in rad	liogranhy	, Digital			
	radiograp	hy. Advantages D	isadvanta	ges and	Annlic	ations of			
	radiogram	hy. Types of radiogra	aphic tech	niques. F	Precautio	ns against			
	radiation	hazards and health.	r 00011						
Unit 4	Ultrasoni								

	Introduction, Basic terms associated with ultrasonic testing, Principles of ultrasonic testing, Equipment of ultrasonic testing, Ultrasonic probes, Radiated field of ultrasonic transducers, Advantages, Disadvantages and Applications of ultrasonic testing, Ultrasonic inspection techniques, CRO, Data presentation.	CO4
	affecting eddy current, Eddy current flow characteristics, eddy current instruments and probes, Advantages, Disadvantages and Applications of eddy current testing.	
Text Books	 Lari & Kumar.Basics of Non Destructive Testing. New Delhi: S K Kataria & Sons.2013. Print. Davies, Troxell, and Hauck G.F.W. The testing of Engineering materials, New York: McGraw Hill. Print. 	
Reference Books	 Cary, Howard, Modern Welding Technology. Prentice Hall, 1998.Print. Richard, L. Welding & Welding Technology. Tata McGraw Hill. 2001. Print. Bohnart, E.R.Welding:Principles & Practices. Tata McGraw Hill.2014. Print. 	

Course Code	MED (Specialization Course III)						
Course Title	Supply Chain Management						
Course	CO1:To impa	art knowledge abou	ut the impo	ortance ai	nd strateg	ic decision	s involved in supply
Outcomes	chain manag	gement.					
	CO2:To eval	uate various types	of sources	and trans	sport man	lagement ir	n a supply chain.
	CO3:Studen	ts will also be mad	de familia	r with the	e concept	of Inform	ation Technology&
	CO4:System	s in Supply Chain					
	Students wil	ll also be made fam	iliar with t	he conce	pt of Reve	erse Supply	Chain.
Examination	Theory						
Mode							
Assessment	Written	Assignment/	MSE	MTP	ESE	EPR	ABL/PBL
Tools	Quiz	Project Work					
Weightage	10	10	25		50		5
		Syllabus					CO Mapping
Unit 1		•					
	Supply Chai	n Management: W	hat and W	/hy?			CO1
	Background	of supply chain m	anagemer	nt, Conce	pt of SCM	1, Generic	
	types of su	oply chains, Variou	ıs dimensi	ons and i	, implicatio	ns, Major	
	drivers of su	pply chain, SCM as	professio	า.	•	<i>,</i> ,	
	Strategic De	cisions in Supply C	hain Mana	agement			
	Introduction	n, Business Strategy	/ (Model f	or strateg	y formati	ion, Order	
	winners and	l qualifiers, Supply	Chain stra	tegies, Va	,, lue in sup	ply chain:	
	quality, deli	very, flexibility an	d cost), C	ore comp	Detencies	in supply	
	chains, Stra	ategic supply cha	in decisio	ons, Cust	omer Re	lationship	
	Managemer	nt Strategy, Supplie	r Relations	ship Mana	igement S	trategy	
Unit 2							
	Source Man	CO2					
	Introduction, Elements of strategic sourcing, A Collaborative						
	perspective,						
	Transportat	ion Management i	n Supply C	hain			
	Introduction	n, Strategy, Transpo	ortation se	lection, T	rade Off,	Modes of	
	transportati	on and distribution	, Third pai	rty logistic	: (3PL), O\	verview of	
	an Indian inf	frastructure for trai	nsportatio	n			
Unit 3							
	Information	Technology in Sup	ply Chain				CO3
	Introduction	n, Typical IT solu	utions: El	ectronic	Data Int	erchange,	
	Internet/Ext	ranet, Data minin	g/Data wa	arehousin	g, E-Com	merce, E-	
	Procuremen	it, Bar Coding techr	ology, oth	er techno	ologies		
	Information	System in Supply	Chain				
	Introduction	n, Computer based i	informatio	n system,	, Compute	er Models,	
	Perceptions	about ERP, ERP and	d SCM				
Unit 4							
	Reverse Sup	oply Chain					CO4
	Introduction	n, Reverse Supply C	hain vs Fo	rward Sup	oply Chain	, Types of	
	reverse flow	vs, Issues in the r	nanageme	ent of rev	verse sup	ply chain,	
	Reverse su	pply chain for	food iter	ns, Reve	rse logis	tics, and	
	environmen	tal impact			-		
	Cases in Sup	oply Chain					
	Newspaper	supply chain, Boo	k Publishi	ng, Suppl	y chain ir	n Disaster	
	Managemer	nt					
Text Books	1Mohanty.	Supply Chain Mana	gement. N	ew Delhi:	Biztantra	a. Print.	

Reference	1Sahay. Supply Chain Modelling and Solutions. New Delhi: Macmillan.	
Books	2009. Print.	
	2Raghuram. Logistics andSupply Chain Management. New Delhi:	
	Macmillan. Print.	

Course Code	MED (Spe	cialization Course IV)							
Course Title	Design of Robotic System								
Course	On the completion of the course the student will be able to:								
Outcomes	CO1: Stud	CO1: Students will learn about the robotic system.							
	CO2: Stud	lents will learn about the	kinemat	tics of rob	ot manipulat	or.			
	CO3: Stuc	lents will learn about the	dynami	cs of robo	t manipulato	or.			
	CO4: Stud	lents will learn about the	design a	and applic	ation of robo	otic system.			
Examination	Theory								
Mode									
Assessment	Written	Assignment/Project	MSE	MTP	ESE	EPR	ABL/PBL		
Tools	Quiz	Work							
Weightage	10%	10%	25%	-	50%	-	5%		
Syllabus					•		CO Mapping		
Unit 1	Introduct	tion							
	Introducti	on: Automation and	Robot	ics, His	torical Dev	elopment,	CO1		
	Definition	s, Basic Structure of	Robots	, Robot	Anatomy,	Complete			
	Classificat	ion of Robots, Fundame	ntals at	out Robo	ot Technolog	gy, Factors			
	related to	o use Robot Performance	, Basic	Robot Co	onfigurations	and their			
	Relative N	Relative Merits and Demerits, Types of Drive Systems and their Relative							
	Merits, the	Merits, the Wrist & Gripper Subassemblies. Concepts and Model about Basic							
	Control System, Transformation and Block Diagram of Spring Mass System,								
	Control Loops of Robotic Systems, PTP and CP Trajectory Planning, Different								
	Types of C	Types of Controllers, Control Approaches of Robots							
Unit 2	Kinemati	Kinematics of Robot Manipulator:							
	Kinematic	s of Robot Manipulator	: Introc	luction, G	General Desc	cription of	CO2		
	Robot Ma	anipulator, Mathematical	Prelim	inaries or	n Vectors &	Matrices,			
	Homogen	ous Representation of Ob	jects, Ro	obotic Ma	nipulator Joi	nt			
	Coordinat	e System, Euler Angle &	Euler	Transforn	nations, Roll	-Pitch-Yaw			
	(RPY) Irar	isformation, Relative Tran	istorma	tion, Direc	ct & Inverse I	kinematics			
	Solution, I	D H Representation & Disp	blaceme	ent Matric	es for				
	Standard	Configurations, Geomet	rical Ap	proach t	O Inverse K	inematics.			
	Homogen	eous Robotic Differential	Transfo	ormation:	Introduction	i, Jacobian			
	Debetic	ation in Robotic Manipul	tonu lo	traduction	n Conoral Stu	auctures of			
	RODULC W		no wit	troduction	n, General Su	Robotic			
	Morkenae	o Porformanco Indov. Evt	ns wit	n n rev	Pohotic Hone	, RUDULIC			
	Task Dec	cription Robotic Motic	on Trai	ectory D	nobolic Halle	roduction			
	Trajectory	Internolators Rasic Stru	ni iidj cture o	f Traiacto	rv Internolat	ors Cubic			
	Ioint Traie	actories General Design (onsider	ation on	Traiectories	Δ_{-3}			
	5-3 Traiec	tories. Admissible Motion	Traiect	ories		· J · Q J ⁻			
Unit 3	Dvnamic	s of Robotic Manipulat	ors						
5111.5	Dynamic:		515						

	Dynamics of Robotic Manipulators: Introduction, Bone, Graph Modeling of	CO3
	Robotic Manipulators, Examples of Bond Graph Dynamic Modeling of	
	Robotic Manipulator. Brief Discussion on Lagrange-Euler (LE) Dynamic	
	Modeling of Robotic Manipulators- Preliminary Definitions, Generalized	
	Robotic Coordinates, Dynamic Constraints, Velocity & Acceleration of	
	Moving Frames, Robotic Mass Distribution & Inertia Tensors, Newton's	
	Equation, Euler Equations, The Lagrangian & Lagrange's Equations.	
	Application of Lagrange-Euler (LE) Dynamic Modeling of Robotic	
	Manipulators: - Velocity of Joints, Kinetic Energy T of Arm, Potential Energy	
	V of Robotic Arm, The Lagrange L, Two Link Robotic Dynamics with	
	Distributed Mass, Dynamic Equations of Motion for A General Six Axis	
	Manipulator.	
	Robot Teaching: Introduction, Various Teaching Methods, Task	
	Programming, survey of Robot Level Programming Languages, A Robot	
	Program as a Path in Space, Motion Interpolation, WAIT, SIGNAL &	
	DELAY Commands, Branching, Robot Language Structure, various Textual	
	Robot Languages Such as VAL II, RAIL, AML and their Features, Typical	
	Programming Examples such as Palletizing, Loading a Machine Etc.	
Unit 4	Robot Sensing & Vision	
	Robot Sensing & Vision: Various Sensors and their Classification, Use of	CO4
	Sensors and Sensor Based System in Robotics, Machine Vision System,	
	Description, Sensing, Digitizing, Image Processing and Analysis and	
	Application of Machine Vision System, Robotic Assembly Sensors and	
	Intelligent Sensors.	
	Industrial Applications: Objectives, Automation in Manufacturing, Robot	
	Application in Industry, Task Programming, Goals of AI Research, AI	
	Techniques, Robot Intelligence and Task Planning, Modern Robots, Future	
	Application and Challenges and Case Studies.	
Text Books	1. A Robot Engineering Textbook by Mohsen Shahinpoor; Harper & Row	
	publishers, New York.	
	2. Robotics, control vision and intelligence by Fu, Lee and Gonzalez;	
	McGraw Hill International.	
	3. Introduction to Robotics by John J. Craig; Addison Wesley Publishing.	
	4. Robotics for Engineers by Yoram Koren; McGraw Hill International.	
	5. Industrial Robotics by Groover, Weiss, Nagel; McGraw Hill International.	
	6. Robotics and Control by Nagrath-Mittal, TMH	
Reference	7. Robot Technology Fundamentals by Keramas, Thomson; Vikas	
Books	Publication House.	
	8. Company Fundamentals of Robotics Analysis and Control by Schilling;	
	Prentice Hall.	
	9. Introduction to Robotics by Niku; Pearson Education, Asia.	
	10. Foundation of Robotics by Yoshikawa; Prentice Hall (EEE).	

Course Code	MED (Spe	MED (Specialization Course IV)						
Course Title	Design of Heat Exchanger							
Course	On the completion of the course the student will be able to:							
Outcomes	CO1: A basic understanding of several types of heat exchangers that will include shell-and-							
	tube, double pipe, plate-and-frame, finned tube, and plate-fin heat exchangers, Heat							
	pipes.							
	CO2: Desi	CO2: Design and analyses of shell-and-tube double pipe, compact, plate heat exchangers.						
	CO3: Ide	CO3: Identify methods to quickly and accurately troubleshoot, diagnose and correct						
	opera	operating problems in distillation column reboilers and condensers.						
	CO4: Eval	CO4: Evaluate the performance of heat exchangers and degradation of heat exchangers						
F	subje	ect to fouling.						
Examination	Theory							
IVIODE		A	NACE	NATO				
Assessment	written	Assignment/	IVISE	MIP	ESE	EPK	ABL/PBL	
100IS	QUIZ		250/		F.09/		F0/	
Syllabus	10%	10%	25%	-	50%	-	5%	
Syllabus							CO Mapping	
Unit 1	Introduct	tion to Heat Exchang	ers					
	– Classific	ation according to tran	sfer proc	ess, numl	per of flui	ds, surface	CO1	
	compactn	ess, and construction f	eatures. 7	rubular h	eat excha	nger, plate		
	type heat	exchangers, extended	d surface	heat exc	hangers,	heat pipe,		
	Regenerat	tors. Classification acc	ording to	flow ar	rangemer	nt: counter		
	flow, para	llel flow, cross flow exc	hanger.					
Unit 2	Heat exchanger design methodology							
	assumptio	CO2						
	method, F	od, fouling						
	of heat exchanger, effects of fouling, categories of fouling, fundamental							
	processes of fouling.							
Unit 3	Double P							
	Thermal a	CO3						
	analysis c	xchangers:						
	Inermala	ind Hydraulic design of d	compact n	leat excha	inger, Sne	and lube		
	thermal a	nangers – Tinker's, ker	n s, and I	Bell Delav	ware s me	ethods, for		
Linit 4	Mechani	cal Design of Heat Ex	changer		. exchange			
01111 4		cal Design of Heat Lx	changers	, in heat	exchance	or design	<u> </u>	
	material s	election and thickness	calculatio	n for mai	or compo	nents such	04	
	as tube	sheet shell tuhes f	flanges a	nd nozzl	es Intro	duction to		
	simulation	and optimization of he	eat exchar	ngers, flov	v induced	vibrations		
Text Books	1. G. Walk	kers. "Industrial Heat F	changers	-A Basic (Guide". M	cGraw Hill.		
	1982					, ,		
Reference	1. Ramesh	n K. Shah and Dusan P. S	Sekulic, "F	undamer	ntals of He	eat		
Books	Exchange	r Design" John Wiley &	sons Inc.,	, 2003.				
	2. D.C. Ke	rn, "Process Heat Trans	fer" <i>,</i> McG	iraw Hill, :	1950.			
	3. Sadik Ka	akac and Hongton Liu, '	'Heat Excl	hangers: S	Selection,	Rating		
	and Thern	nal Design" CRC Press,	1998.					
	4. A .P. Fra	ass and M.N. Ozisik, "He	eat Excha	nger Desi	gn", McG	raw Hill,		
	1984							

5. Afgan N. and Schlinder E.V. "Heat Exchanger Design and Theory	
Source Book".	1
6. T. Kuppan, "Hand Book of Heat Exchanger Design".	
7. "T.E.M.A. Standard", New York, 1999.	

Course Code	MED (Specialization Course IV)								
Course Title	Design for Manufacturing and Assembly								
Course	On the completion of the course the student will be able to:								
Outcomes	CO1: Knov	CO1: Know the manufacturing issues that must be considered in the mechanical engineering							
	design pro	design process							
	CO2: Knov	CO2: Know the principles of assembly to minimize the assembly time							
	CO3: Kno	w the effect of manu	, ufacturing	process a	nd assem	, bly operation	ons on the cost of		
	product (r	product (not included by others)							
	CO4: Be familiar with tools and methods to facilitate development of manufactural								
	mechanical designs								
Examination	Theory	Theory							
Mode									
Assessment	Written	Assignment/	MSF	MTP	ESE	FPR	ABI /PBI		
Tools	Quiz	Project Work	1113L		232	2			
Weightage	10%	10%	25%	_	50%	_	5%		
Syllabus	1070	10/0	2370		5070		CO Manning		
Synabus							CO wiapping		
Linit 1	Introduct	tion							
	Introducti	on Need Identificat	ion and	Drohlem	Definition	Concent	CO1		
	Generatio	on Need Identification Em	hodimont	Decign Se	election o	f Matorials			
	and Shane	ni anu Evaluation, Em	bouinent	Design, Se					
	Droportio	es. E of Engineering Mate	rials Salas	tion of M	atorials	I Salaction			
	of Matoria	o ci ci gi i eei ii g wate	nais, selec		ateriais –	i, Selection			
		dis — II, lies — I. Coloction of	Change (`o coloctio	n of Mo	torials and			
	Case Stud	nes – I, Selection of	snapes, C	lo-selectic	DI OI IVIA	lendis anu			
	Snapes, C	Shapes, Case Studies – II,							
Unit 2	Design fo	. (
	Selection	of Manufacturing	Processes,	Review	ot Mar	nutacturing	02		
	Processes								
	Design for								
	Design for								
	of Matoria								
11		als and Processes, Cas	e-studies -	- 111					
Unit 3	Design fo	or Assembly and we	elaing	D	Desite of		600		
	Design for	03							
	– I, Design								
	Weiding -	- II, Design for Brazi	ing and Sc	ndering, L	Jesign To	r Adnesive			
	of Dolumo	Design for Joining	aatmant (aca Ctudi					
	Decimo fo	ns, Design for Heat fr	eatment, C	ase-studie	es - Iv				
Unit 4	Design fo								
	Design to	r Reliability, Failure	Mode and	Effect A	nalysis ar	nd Quality,	CO4		
	Design for	Quality,							
	Design fo	or Reliability, Appro	oach to	Robust L	Jesign, L	Design for			
	Optimizat	ion,							
Text Books	1. G Diete	er, Engineering Design	n - a mater	ials and p	processing	approach,			
	McGraw H	HIII, NY,							
	2. M F Asl	hby and K Johnson, M	laterials an	d Design	- the art a	ind science			
	of materia	al selection in product	design, Bu	tterworth	-Heinema	ann.			
Reference	1. S S Rao,	1. S S Rao, Engineering Optimization: theory and practice, John Wiley, NY,							
Books	1996.								

2. J G Bralla, Handbook for Product Design for Manufacture, McGraw Hill,
NY, 1998.
3. G Boothroyd, P Dewhurst and W Knight, Product design for
manufacture and assembly, John Wiley, NY: Marcel Dekkar, 1994.

Course Code	MED (Specia	lization Course IV)					
Course Title	Industrial ar	Industrial and Organizational Psychology					
Course	CO1:Studen	CO1:Students will learn about Industrial and Organizational Psychology.					
Outcomes	CO2:To lear	n evaluating metho	ds of emp	loyee perf	formance		
	CO3:To lear	n the employee's tr	aining me	thods.			
	CO4: Studen	ts will learn about	Job Attitu	de and Em	notions.		
Examination Mode	Theory						
Assessment Tools	Written Ouiz	ABL/PBL					
Weightage	10	10	25		50		5
	_	Syllabus	_				CO Mapping
Unit 1							11 0
	Introduction Introduction of I/O psychology, Activities and settings of I/O psychology, I/O psychology as a profession, I/O psychology as a science, History of the field of I/O psychology, Recourses required to become an I/O psychologist, Ethics in I/O field, Humanitarian work psychology. Job Analysis Job analysis: Job orientation approach, Person orientated approach, Purposes of Job Analysis, Collection of Job Analysis information and sources of information, approaches to collecting job analysis information, Methods of job analysis, Reliability and validity of Job					CO1	
Unit 2							
	 Performance Appraisal Need to appraise employees, Performance Criteria, Methods of assessing job performance (Both objective and subjective measures), Impact of technology on performance appraisal, Legal issues in performance appraisal. Assessment Methods for Selection and Placement Job-related characteristics, Psychological tests, Characteristics of tests, Ability tests, Knowledge and Skill tests, Biographical information, Interviews, Work samples, Assessment Centre, and Electronic assessment 					CO2	
Unit 3							
	Selecting Employees The planning of human resource needs, Recruiting applicants, Selecting employees, Validity generalization, Getting applicants to accept and keep jobs offered, Unity of scientific selection International differences in selection practices. Training					CO3	
	Needs assessment, Objectives, Training Design, Work environment, Training methods, Electronic Training, Mentoring, Executive coaching, Delivery of a training program, Evaluation of training program.						
Unit 4							
	Theories of Employee Motivation						CO4

	Motivation: Motivation Theories, Need theories, Reinforcement							
	theories, Expectancy theory, Self-efficacy theory, Justice theory, Goal							
	setting theory, Control theory, and Action theory.							
	Job Attitude and Emotions							
	Nature of job satisfaction, Feelings of people about their Jobs,							
	Assessment of job satisfaction, Antecedents of job satisfaction,							
	Potential effects of job satisfaction, Organizational committee,							
	Emotions at work.							
Text Books	1Spector. Industrial and Organizational Psychology. Wiley. 2015. Print.							
Reference	2Frank and Jeffrey. Work in 21 st Century, Introduction to Industrial and							
Books	Organizational Psychology. Wiley. 2009. Print.							

The Syllabus for Generic Elective I and II will be as per approved by respective BOS of other departments.