DAV UNIVERSITY JALANDHAR

Course Scheme & Syllabus

For

B. Tech. in Electrical Engineering

1st TO 8th SEMESTER **Examinations 2022–2026 Session**

Syllabi Applicable For Admissions in 2022

Mandatory Induction program (Appendix A)[Induction program for students to be offered right at the start of the first year.]

3 Weeks Induction Program(Mandatory)

- Physical activity
- **Creative Arts**
- Universal Human Values
- Literary
- **Proficiency Modules**
- Lectures by Eminent People
- Visits to Local Areas
- Familiarization to Dept./Branch & Innovations

Scheme of Courses B. Tech. in Electrical Engineering Semester-1

							NATURE OF
G NI	D. DED GODE	COMPAN WANT D	_		_	C.D.	NATURE OF
S.No	PAPERCODE	COURSE TITLE	L	T	P	CR	COURSE
1	MTH151A	ENGINEERING MATHEMATICS-I	4	0	0	4	CORE
2	ELE105	BASIC ELECTRICAL ENGINEERING	4	0	0	4	CORE
3	MEC103	MECHANICAL ENGINEERING FUNDAMENTALS	4	0	0	4	CORE
4	MEC104	MANUFACTURING PRACTICE	0	0	4	2	AECC
5	PHY151B	ENGINEERING PHYSICS	4	0	0	4	CORE
6	PHY152	ENGINEERING PHYSICS LAB	0	0	2	1	CORE
7	SGS107B	HUMAN VALUES AND GENERAL STUDIES	4	0	0	0	NON CREDIT
8	ELE106	BASIC ELECTRICAL ENGINEERING LABORATORY	0	0	2	1	CORE
		TOTAL	20	0	8	20	

L: Lectures T: Tutorial P: Practical Cr: Credits

Scheme of Courses B. Tech. in Electrical Engineering **Semester-2**

	PAPER						NATURE OF
S.No	CODE	COURSE TITLE	L	T	P	CR	COURSE
1	MTH152A	ENGINEERING MATHEMATICS-II	4	0	0	4	CORE
2	CHE151A	CHEMISTRY	4	0	0	4	CORE
3	CSE101A	COMPUTER FUNDAMENTALS AND PROGRAMMING	4	0	0	4	CORE
4	ENG151A	BASIC COMMUNICATION SKILLS	3	0	0	3	AECC
5	EVS100A	ENVIRONMENTAL STUDIES	4	0	0	0	NON-CREDIT
6	MEC101A	ENGINEERING DRAWING	2	0	4	4	CORE
7	CHE152	CHEMISTRY LAB	0	0	2	1	CORE
		COMPUTER FUNDAMENTALS AND PROGRAMMING					
8	CSE103	LAB	0	0	2	1	CORE
9	ENG152	BASIC COMMUNICATION SKILLS LABORATORY	0	0	2	1	AECC
		TOTAL	21	0	10	21	

L: Lectures T: Tutorial P: Practical Cr: Credits

Note: At the end of the examination of 2nd Semester the students will undergo compulsory Swachh Bharat Summer Internshipfor a period of 100Hours duration. The credits for this will be included in the 3^{rd} semester.

Visit to nearby power plant Hydro, Thermal, Nuclear.

Scheme of Courses B. Tech. in Electrical Engineering **Semester-3**

	bemester b											
Sr.	COURSE	COURSE TITLE	L	T	P	CR	NATURE OF					
No	CODE						COURSE					
1.	ELE201A	NETWORK ANALYSIS & SYNTHESIS	4	0	0	4	CORE					
	ELE202A	ELECTRICAL MACHINES-I (DC MACHINES &	4	0	0	4						
2.		TRANSFORMERS)					CORE					
3.	ELE209A	ELECTRICAL MEASUREMENT AND INSTRUMENTATION	4	0	0	4	CORE					
4.	MTH252A	ENGINEERING MATHEMATICS-III	4	0	0	4	CORE					
5.	ELE216	GENERATION & CONTROL OF POWER	4	0	0	4	CORE					
6.	ELE203A	DC MACHINE & TRANSFORMERS LABORATORY	0	0	2	1	CORE					
	ELE210	ELECTRICAL MEASUREMENT AND INSTRUMENTATION	0	0	2	1						
7.		LABORATORY					CORE					
		SWACHH BHARAT SUMMER INTERNSHIP	0	0	0	2						
8.	ELE400						AECC					
			20	0	4	24						
	TOTAL											

L: Lectures T: Tutorial P: Practical Cr: Credits

Scheme of Courses B. Tech. in Electrical Engineering Semester-4

Sr.	COURSE	COURSE TITLE	L	T	P	CR.	NATURE OF
No	CODE						COURSE
1.	ECE211	ANALOG ELECTRONICS	4	0	0	4	CORE
2.	ELE204	ELECTROMAGNETIC FIELD THEORY	4	0	0	4	CORE
	ELE218	ELECTRICAL MACHINES –II (ASYNCHRONOUS &	4	0	0	4	
3.		SPECIAL PURPOSE MACHINES)					CORE
	ELE217A	POWER SYSTEM-I (TRANSMISSION &	4	0	0	4	
4.		DISTRIBUTION)					CORE
	ELE214B	RENEWABLE ENERGY SOURCES AND	3	0	0	3	
5.		MANAGEMENT					CORE
6.	ECE214	ANALOG ELECTRONICS LABORATORY	0	0	2	1	CORE
7.	ELE470A	ESTIMATION AND COSTING LABORATORY	0	0	6	3	CORE
		TOTAL	19	0	8	23	

L: Lectures T: Tutorial P: Practical Cr: Credits

Note: At the end of the examination of 4thSemester the students will undergo compulsory industrial trainingfor a period of 4 weeks duration in reputed industries. Every student will submit the Training Report within two weeks from the start of teaching for 5th Semester. The credit for this will be included in the 5th Semester.

Scheme of Courses B. Tech. in Electrical Engineering Semester-5

SR.	COURSE	COURSE TITLE	L	T	P	CR.	NATURE OF
No.	CODE						COURSE
1.	ELE330	SIGNAL AND SYSTEMS	3	0	0	3	CORE
2.	ELE306A	POWER ELECTRONICS	4	0	0	4	CORE
3.	ELE 310	POWER ELECTRONICS LABORATORY	0	0	2	1	CORE
4.	ELE314	DIGITAL ELECTRONICS	3	0	0	3	CORE
	ELE342A	POWER SYSTEM-II (STABILITY & FAULT	4	0	0	4	
5.		ANALYSIS)					CORE
6.	ELE318A	TRANSDUCER AND SIGNAL CONDITIONING	3	0	0	3	CORE
7.	ELE331	DIGITAL ELECTRONICS LABORATORY	0	0	2	1	CORE
	ELE350	INDUSTRIAL TRAINING-I	0	0	0	2	TRAINING,
							SEMINAR
							AND
8.							PROJECT
9.	ELE317	DESIGN AND SOFTWARE LABORATORY	1	0	3	2	CORE
		TOTAL	18	0	7	23	

L: Lectures T: Tutorial P: Practical Cr: Credits

Scheme of Courses B. Tech. in Electrical Engineering Semester-6

SR.	COURSE	COURSE TITLE	L	T	P	CR.	NATURE OF
NO.	CODE						COURSE
1.	ELE337	POWER SYSTEM –III (SWITCHGEAR & PROTECTION)	4	0	0	4	CORE
2.	ELE338	CONTROL SYSTEM	4	0	0	4	CORE
3.	ELE339	CONTROL SYSTEM LABORATORY	0	0	2	1	CORE
4.	ELE343	ELECTRICAL SAFETY AND STANDARDS	3	0	0	3	CORE
5.	ENG351	TECHNICAL COMMUNICATION	3	0	0	3	AECC
	ELE340	ELECTRICAL MACHINES – III (SYNCHRONOUS	4	0	0	4	
6.		MACHINES)					CORE
7.	ELE33X	DISCIPLINE SPECIFIC ELECTIVE-I	4	0	0	4	DSE I
8.	ELE309	POWER SYSTEM LABORATORY	0	0	2	1	CORE
	ELE341	ASYNCHRONOUS & SYNCHRONOUS MACHINES	0	0	2	1	
9.		LABORATORY					CORE
		TOTAL	22	0	6	25	

L: Lectures T: Tutorial P: Practical Cr: Credits Note:

- Discipline specific elective-I should be from the basket of "Discipline Specific Elective-I".
- At the end of the examination of 6thSemester the students will undergo compulsory industrial training for a period of 6 weeks duration in reputed industries. Every student will submit the

training report within two weeks from the start of teaching of 7th Semester. The credits for this will be included in the 7th semester.

Scheme of Courses B. Tech. in Electrical Engineering Semester-7

SR. No	COURSE CODE	COURSE TITLE	L	Т	P	CR.	NATURE OF COURSE
	ELE410	MICROPROCESSOR &	4	0	0	4	
1.		MICROCONTROLLER					CORE
	ELE411	MICROPROCESSOR,	0	0	2	1	CORE
		MICROCONTROLLER & PLC					
2.		LABORATORY					
3.	ELE326	ELECTRIC DRIVES	4	0	0	4	CORE
4.	ELEXXX	DISCIPLINE SPECIFIC ELECTIVE -II	4	0	0	4	DSE-II
5.	ELEXXX	DISCIPLINE SPECIFIC ELECTIVE –III	4	0	0	4	DSE-III
		GENERIC ELECTIVE - I	4	0	0	4	GENERIC ELECTIVE
6.							-I
	ELE406A	INDUSTRIAL TRAINING-II	0	0	0	2	TRAINING,
							SEMINAR AND
7.							PROJECT
	ELE451A	PROJECT LABORATORY	0	0	8	4	TRAINING,
							SEMINAR AND
8.							PROJECT
		TOTAL	20	0	10	27	

L: Lectures T: Tutorial P: Practical Cr: Credits *Note:*

- Discipline specificelective-II should be from the basket of "Discipline Specific Elective-II".
- Generic elective-I should be from the "Generic Elective Basket"

Scheme of Courses B. Tech. in Electrical Engineering **Semester-8**

SR.	COURSE	COURSE TITLE	L	T	P	CR.	NATURE OF COURSE
NO.	CODE						
	ELEXXX	DISCIPLINE SPECIFIC ELECTIVE –	4	0	0	4	
1.		IV					DSE-IV
	ELEXXX	DISCIPLINE SPECIFIC ELECTIVE -	4	0	0	4	
2.		V					DSE-V
3.	ELE477	HIGH VOLTAGE ENGINEERING	4	0	0	4	CORE
4.	ELE412	UTILIZATION & TRACTION	4	0	0	4	CORE
5.		GENERIC ELECTIVE - II	4	0	0	4	GENERIC ELECTIVE -II
	ELE452	SEMINAR	0	0	4	2	TRAINING, SEMINAR
6.							AND PROJECT
		TOTAL	20	0	4	22	

L: Lectures T: Tutorial P: Practical Cr: Credits Note:

Discipline specificelective-III & IV should be from the basket of "Discipline Specific *Elective-III & IV" respectively.*

• Generic elective-II should be from the "Generic Elective Basket"

Discipline Specific Elective-I

Sr. No.	Course Code	Course Title	L	T	P	Credit
1	ELE327	ELECTRICAL MACHINE DESIGN	4	0	0	4
2	ELE332	ENERGY EFFICIENT MACHINES	4	0	0	4
3	ELE333	BIOMEDICAL ENGINEERING	4	0	0	4
4	ELE334	INDUSTRIAL PROCESS CONTROL	4	0	0	4
5	ELE335	COMMUNICATION SYSTEMS	4	0	0	4
		MOOC-I Courses	4	0	0	4
Discipline	Specific Elective-II					
Sr. No.	Course Code	Course Title	L	T	P	Credit
1	ELE431	RELIABILITY ENGINEERING	4	0	0	4
2	ELEXXX	INDUSTRIAL ROBOTICS	4	0	0	4
3	ELE447	DIGITAL CONT4ROL SYSTEMS	4	4 0 0		4
4	ELE439	MICROSENSORS AND SMART DEVICES	4	0	0	4
5	ELE437	DIGITAL SIGNAL PROCESSING	4	0	0	4
		MOOC-II Courses	4	0	0	4
Discipline	Specific Elective-II	I				
Sr. No.	Course Code	Course Title	L	T	P	Credit
1	ELE448	OPTIMAL CONTROL	4	0	0	4
_		FUNDAMENTALS OF VIRTUAL			_	
2	ELE436	INSTRUMENTATION COMPUTATIONAL	4	0	0	4
3	ELE449	ELECTROMAGNETICS	4	0	0	4
		ELECTRICAL ENGINEERING				
4	ELE450	MATERIALS	4	0	0	4
5	ELE468	ADVANCED INSTRUMENTATION	4	0	0	4
		MOOC-III Courses	4	0	0	4
	Specific Elective-IV			TD.		
Sr. No.	Course Code	Course Title	L	Т	P	Credit
1	ELE459	ELECTRICAL AND HYBRID VEHICLES	4	0	0	4
2	ELE460	NEURAL NETWORKS AND FUZZY LOGICS	4	0	0	4
	EBETOO	ELECTRICAL ENERGY AUDITING AND			0	
3	ELE408	DEREGULATION	4	0	0	4
4	ELE461	POWER QUALITY AND FACTS	4	0	0	4
5	ELE435	OPTIMIZATION TECHNIQUES	4	0	0	4
		MOOC-IV Courses	4	0	0	4
Discipline	Specific Elective-V				1	
Sr. No.	Course Code	Course Title	L	T	P	Credit
1	ELE463	POWER SYSTEM DYNAMICS AND CONTROL	4	0	0	4
2	ELE464	INDUSTRIAL ELECTRICAL SYSTEMS	4	0	0	4
3	ELE465	ADVANCED ELECTRIC DRIVES	4	0	0	4
4	ELE467	CONTROL SYSTEMS DESIGN	4	0	0	4
5	ELE407	POWER PLANT ENGINEERNING	 4	0	0	4
	EEE 107	10., ERTERIT ERGINEERTING				

	1			
MOOC-V Courses	4	0	0	4

List of MOOC courses

Students have been given the choices for the MOOC/Elective courses. The proposed list of MOOC courses have been given, however the student have choice to choose relevant courses with due consent of department head that must be running in particular academic semester.

MOOC-I						
Sr. No.	Course Code	Course Title	L	T	P	Credit
1	MOOC	POWER QUALITY	4	0	0	4
		SIGNAL PROCESSING FOR MMWAVE				
2	MOOC	COMMUNICATION FOR 5G AND BEYOND	4	0	0	4
		CONTROL AND TUNING METHODS IN				
3	MOOC	SWITCHED MODE POWER CONVERTERS	4	0	0	4
à	1,000	ADVANCED MICROWAVE GUIDED-				
4	MOOC	STRUCTURES AND ANALYSIS	4	0	0	4
MOOC C	OURSES -II		_	-		
Sr. No.	Course Code	Course Title	L	T	P	Credit
		INTRODUCTION TO SEMICONDUCTOR				
1	MOOC	DEVICES	4	0	0	4
		MATHEMATICAL ASPECTS OF				
2	MOOC	BIOMEDICAL ELECTRONIC SYSTEM DESIGN	4	0	0	4
<u>Z</u>	MOOC	DIGITAL SIGNAL PROCESSING AND ITS	4	U	U	4
3	MOOC	APPLICATIONS	4	0	0	4
		COMPUTER VISION AND IMAGE				
		PROCESSING FUNDAMENTALS AND				
4	MOOC	APPLICATIONS	4	0	0	4
MOOC C	OURSES -III					
Sr. No.	Course Code	Course Title	L	T	P	Credit
		INTRODUCTION TO TIME-VARYING				
1	MOOC	ELECTRICAL NETWORKS	4	0	0	4
2	MOOC	DIGITAL SYSTEM DESIGN	4	0	0	4
3	MOOC	PHOTONIC INTEGRATED CIRCUIT	4	0	0	4
4	MOOC	APPLIED LINEAR ALGEBRA	4	0	0	4
MOOC C	OURSES -IV					
Sr. No.	Course Code	Course Title	L	T	P	Credit
1	MOOC Courses	POWER SYSTEM PROTECTION	4	0	0	4
		FIBER OPTIC COMMUNICATION		Ť		•
2	MOOC	TECHNOLOGY	4	0	0	4
3	MOOC	IMAGE SIGNAL PROCESSING	4	0	0	4
	3.200	INTRODUCTORY NEUROSCIENCE &				-
4	MOOC	NEURO-INSTRUMENTATION	4	0	0	4
MOOC C	OURSES -V					
Sr. No.	Course Code	Course Title	L	Т	P	Credit
1	MOOC	INFORMATION THEORY	4	0	0	4
		HIGH POWER MULTILEVEL		Ť		•
		CONVERTERSANALYSIS, DESIGN AND				
2	MOOC	OPERATIONAL ISSUES	4	0	0	4
3	MOOC	MICROPROCESSORS AND INTERFACING	4	0	0	4
4	MOOC	STATISTICAL SIGNAL PROCESSING	4	0	0	4

Generic Elective Basket

S.NO.	PAPER CODE	COURSE TITLE	L	Т	P	Cr
1	ELE801	ELECTRO-MECHANICAL ENERGY CONVERSION	4	0	0	4
2	ELE802	TRANSDUCERS AND SIGNAL CONDITIONING	4	0	0	4
3	ELE 803	FUNDAMENTALS OF ELECTRICAL MEASUREMENT AND INSTRUMENTATION	4	0	0	4
4	CHL801	INDUSTRIAL POLLUTION CONTROL	4	0	0	4
5	CHL802	FUEL CELL TECHNOLOGY	4	0	0	4
6	MEC801	INDUSTRIAL ENGINEERING TECHNIQUES	4	0	0	4
7	MEC802	ENERGY RESOURCES	4	0	0	4
8	CSE801	SOFTWARE ENGINEERING & PROJECT MANAGEMENT	4	0	0	4
9	CSE802	COMPUTER NETWORKS	4	0	0	4
10	ECE801	COMMUNICATION AND MEDIA FOUNDATIONS	4	0	0	4
11	ECE802	ELECTRONIC DISPLAYS	4	0	0	4
12	ECE803	EVERYDAY ELECTRONICS	4	0	0	4
13	CIV801	CONSTRUCTION MATERIALS AND TECHNIQUES	4	0	0	4
14	CIV802	RAILWAY AND TUNNEL ENGINEERING	4	0	0	4
15	MGT151A	FUNDAMENTALS OF MANAGEMENT	4	0	0	4
16	MGT152	FUNDAMENTALS OF ADVERTISING	4	0	0	4
17	MGT153	FUNDAMENTALS OF STOCK MARKET	4	0	0	4
18	MGT154	FUNDAMENTALS OF RESEARCH METHODS	4	0	0	4
19	MGT155	FUNDAMENTALS OF ACCOUNTING & FINANCE	4	0	0	4

B Tech Course Structure

CBCS	Nature of Courses	Core	Elect	ive Cours	es	Ability Enl Cou		Total Credits
Year	Course Structure	Core	TRAINING, SEMINAR AND PROJECT	Generic Elective	Specific Elective/ MOOC Courses	Ability Enhancement Compulsory Courses	Skill Enhancement Courses	
2020	Electrical	137	10	8	20	11	8*	186+8* =186

Core	=	137
Dissertation/ Project	=	10
Generic Elective	=	8
Discipline Specific Elective	=	20
Ability Enhancement Compulsory Courses	=	6
Skill Enhancement Courses (Non-Credit course)	=	8*

Detailed Syllabus

Course Title:	Engin	Engineering Mathematics-I			Р	Cr		
Course Code:	MTH1	MTH151A		0	0	4		
Course Outcome:	CO1	Understanding Rank of matrices,						
After completion course, the stude	of co2	Concept of limit and continuity of a function of two variables						
should be able to	CO3	Solution of differential equation by separation o	f var	iable	es			
	CO4	Solution of differential equations with constant coefficients:						
	CO5 Simultaneously Linear differential equation and its solution							
Pank of mar	Rank of matrices Inverse of Matrices Gauss Jordan Method reduction to normal form							

Rank of matrices, Inverse of Matrices, Gauss Jordan Method, reduction to normal form, Consistency and solution of linear algebraic system of equations, Gauss Elimination Method, Eigenvalues and Eigenvectors, Diagonalisation of Matrix, Cayley Hamilton theorem. Orthogonal, Hermitian and unitary matrices.

15 Hours

 $\mathbf{\omega}$

Concept of limit and continuity of a function of two variables, Partial derivatives, Homogenous Function, Euler's Theorem, Total Derivative, Differentiation of an implicit function, chain rule, Change of variables, Jacobian, Taylor's and McLaurin's series. Maxima and minima of a function of two and three variables: Lagrange's method of multipliers.

C

Formation of ordinary differential equations, solution of first order differential equations by separation of variables, Homogeneous equations, Reduce to Homogenous, exact differential equations, equations reducible to exact form by integrating factors, equations of the first order and higher degree, clairaut's equation.

14 Hours

Solution of differential equations with constant coefficients: method of differential operators. Non - homogeneous equations of second order with constant coefficients: Solution by method of variation of parameters, Simultaneously Linear differential equation.

13 Hours

- 1. Grewal, B.S. Higher Engineering Mathematics. New Delhi: Khanna Publication, 2009.
- 2. Kreyszig, Erwin. Advanced Engineering Mathematics. New Delhi: Wiley Eastern Ltd., 2003.
- 3. Jain, R K, and K Iyengar S R. Advanced Engineering Mathematics, New Delhi: Narosa Publishing House, 2003.
- 4. Thomas, George B. and Finney Ross L. Calculus and Analytic Geometry. New Delhi Addison Wesley, 1995.

Course Title:	CHEM	CHEMISTRY			Р	Cr	
Course Code:	CHE1	CHE151A		0	0	4	
Course Outcome:	CO1	O1 Understanding Spectroscopy and its Applications					
After completion of course, the students	CO2	UV /IR/ NMR Spectroscopy					
should be able to	СОЗ	Understanding Water and its treatment					
	CO4	Concept of Corrosion and its Prevention					
	CO5	CO5 Chemistry in Nanoscience and Technology					

Spectroscopy and its Applications

General Introduction: Introduction, electromagnetic spectrum, absorption and emission spectrum, atomic and molecular spectroscopy, types of molecular spectra, experimental techniques, selection rules, width and intensities of spectral lines.

UV/Visible Spectroscopy: types of electronic Transitions, Chromophores, Auxochromes, Effect of conjugation on Chromophores, Factors affecting λmax and intensity of spectral lines, effect of solvent on λmax, isobestic point, applications.

IR Spectroscopy: Infrared region, fundamental modes of vibrations and types, theory of infrared spectra, vibrational frequency and energy levels, an harmonic oscillator, modes of vibrations of polyatomic molecules, characteristic signals of IR spectrum, fingerprint region, factors affecting vibrational frequency; applications.

NMR Spectroscopy: Principle and instrumentation, relaxation processes, proton magnetic resonance spectroscopy, number of signals, Chemical shift, Spin-Spin Splitting, coupling constant, applications.

Hours

Water and its treatment

Introduction, hardness of water, degree of hardness, units of hardness, boiler feed water: specification, scales and sludge formation; priming& foaming, boiler corrosion, caustic embrittlement, treatment of boiler feed water, internal treatment of water; softening of water by lime-soda, zeolite and ion exchange methods, desalination of water; Water for domestic use: purification of water for domestic use.

Corrosion and its Prevention

Introduction; different types of corrosion - wet and dry corrosion; mechanism of wet corrosion; comparison of dry and wet corrosion, Types of electrochemical corrosion: galvanic corrosion, concentration cell corrosion or differential aeration corrosion, waterline corrosion, pitting corrosion, crevice corrosion, stress corrosion, intergranular corrosion; other forms of corrosion: atmospheric corrosion, soil corrosion, microbiological corrosion, erosion corrosion, Filliform corrosion, stray current corrosion, passivity, galvanic series, factors influencing corrosion, various methods of corrosion control.

Hours

C

മ

Chemistry in Nanoscience and Technology

Introduction, Materials self-assembly, molecular vs. material self-assembly, hierarchical assembly, self-assembling materials, two dimensional assemblies, mesoscale selfassembly, coercing colloids, nanocrystals, supramolecular structures, nanoscale materials, future perspectives applications, nanocomposities and its applications.

Polymers and Polymerization

Introduction, monomer and repeating unit, degree of polymerization, functionality, classification of polymers: based on origin, monomers, structure, method of synthesis, tacticity or configuration, action of heat, chemical composition, ultimate form; types of polymerization, specific features of polymers, regularity and irregularity, tacticity of polymers, average molecular weights and size, determination of molecular weight by number average methods, effect of molecular weight on the properties of polymers, introduction to polymer reinforced composites.

Hours

- 1. William Kemp, Organic Spectroscopy, Palgrave Foundations, 1991.
- 2. D. A. Skoog, F. J. Holler and A. N. Timothy, Principle of Instrumental Analysis, 5th Edition., Saunders College Publishing, Philadelphia, 1998.
- 3. C. P. Poole, Jr., F. J. Owens, Introduction to Nanotechnology, Wiley Interscience, 2003.
- 4. L.E. Foster, Nanotechnology, Science Innovation & Opportunity, Pearson Education, 2007.
- 5. P. Ghosh, Polymer Science and technology (2nd Edition), Tata McGraw Hill, 2008.
- 6. Wiley Engineering Chemistry, Second Edition, 2013.

Course Title:	Comp	Computer Fundamentals and Programming			Р	Cr	
Course Code:	CSE10	CSE101A		0	0	4	
Course Outcome:	CO1	Introduction to Computers					
After completion of course, the students	CO2	Working Knowledge of Computer System					
should be able to	СОЗ	Fundamentals of Internet Technology					
	CO4	Basic Constructs of C					
	CO5	Concept of array Arrays and Strings					

Introduction to Computers

Define a Computer System, Block diagram of a Computer System and its working, memories, Volatile and non-volatile memory, cache, virtual, secondary storage devices-Magnetic Tape, Hard Disk, CD-DVD, Magnetic Disk, Various input devices including keyboard, Mouse, Joystick, Scanners and Various output devices including Monitors, Printers, Plotters

Operating Systems

Computer Software and its types and Hardware, Operating Systems, their types and functions

15 Hours

$\mathbf{\omega}$

Working Knowledge of Computer System

Introduction to word processors and its features, creating, editing, printing and saving documents, spell check, mail merge, creating power point presentations, creating spreadsheets and simple graphs.

Fundamentals of Internet Technology

Local area networks, MAN and wide area network, Internet, WWW, E-mail, Browsing and Search engines, Internet Connectivity, Network Topology, Hub, Switches, Router, Gateway.

14 Hours

Basic Constructs of C

Keywords, Identifiers, Variables, Data Types and their storage, Arithmetic Operators, Relational Operators, Logical Operators, Bitwise Operators, Increment & Decrement Operators, Expressions, Conditional Expressions, Assignment Operators and Expressions, External Variables and Scope of Variables, Structure of C Program.

Control Structures

Decision making statements: if, nested if, if - else ladder, switch, Loops and iteration: while loop, for loop, do – while loop, break statement, continue statement, goto statement.

Functions

Advantages of functions, function prototype, declaring and defining functions, return statement, call by value and call by reference, recursion, and storage classes.

Arrays and Strings

Declaration of arrays, initialization of array, accessing elements of array, I/O of arrays, passing arrays as arguments to a function, strings, I / O of strings, string manipulation functions (strlen, strcat, strcpy, strcmp)

13 Hours

- 1. V.K. Jain: "Fundamentals of Information Technology and Computer Programming", PHI Latest Edition.
- 2. Anita Goel: "Computers Fundamentals", Pearson Publications
- 3. Brian Kernighan and Dennis M. Ritchie: "The C Programming Language", Prentice Hall, 2nd Edition 2007.
- 4. K.N.King: "C Programming: A Modern Approach", W.W. Norton Company 2nd edition (2008).
- 5. Herbert Schildt: "C: The Complete Reference", Tata Mcgraw Hill Publications 4th edition.
- 6. Gottfired: "Programming in ANSI C, Schaum Series", TMH publications, 2nd Edition (1996).
- 7. Balaguruswamy, E.PROGRAMMING IN ANSI C. Mc-Graw Hill Publications, 7th edition. 2016. Print

Course Title:	Enviro	Environmental Studies			Р	Cr	
Course Code:	EVS10	EVS100A			0	S/US	
Course Outcome:	CO1	O1 The multidisciplinary nature of environmental studies					
After completion of course, the students	CO2	Understanding Biodiversity and its conservation					
should be able to	СОЗ	Social Issues and the Environment					
	CO4	Human Population and Environmen					
	CO5	CO5 Exposure of field work					

The multidisciplinary nature of environmental studies

Definition, scope and importance, Need for public awareness

Natural Resources: Renewable and non-renewable resources:

Natural resources and associated problems

- Forest resources: Use and over-exploitation, deforestation, case studies. Timberextraction, mining, dams and their effects on forests and tribal people.
- b) Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems.
- Mineral resources: Use and exploitation, environmental effects of extracting and usingmineral resources, case studies.
- d) Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.
- e) Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources, case studies.
- Land resources: Land as a resource, land degradation, man induced landslides, soil erosionand desertification.
 - Role of an individual in conservation of natural resources.
 - Equitable use of resources for sustainable lifestyles.

Ecosystem:

- Concept of an ecosystem
- Structure and function of an ecosystem
- Producers, consumers and decomposers

Energy flow in the ecosystem

Ecological succession

Food chains, food webs and ecological pyramids

Introduction, types, characteristic features, structure and function of the following ecosystem:

- 2. Forest ecosystem
- 3. Grassland ecosystem
- 4. Desert ecosystem
- 5. Aquatic ecosystems (ponds, streams, lakes, rivers, ocean estuaries)

Jnit B

Biodiversity and its conservation

- Introduction Definition: Genetic, Species and Ecosystem Diversity
- Bio-geographical classification of India
- Value of biodiversity: Consumptive use, Productive use, Social, Ethical, Aesthetic and Option values
- Biodiversity at global, national and local levels
- India as a mega-diversity nation
- Hot-spots of biodiversity
- Threats to biodiversity: habitat loss, poaching of wildlife, man wildlife conflicts
- Endangered and endemic species of India
- Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity, global and national efforts.

Environmental Pollution

Definition, causes, effects and control measures of:

- a. Air pollution
- b. Water pollution
- c. Soil pollution
- d. Marine pollution
- e. Noise pollution
- f. Thermal pollution
- g. Nuclear pollution
 - Solid waste management: Causes, effects and control measures of urban and industrial wastes.
 - Role of an individual in prevention of pollution
 - Pollution case studies
 - Disaster management: floods, earthquake, cyclone and landslides

Social Issues and the Environment

- Population growth, variation among nations, Population explosion Family Welfare Programmes.
- Environment and human health,
- From unsustainable to sustainable development
- Urban problems and related to energy
- Water conservation, rain water harvesting, watershed management
- Resettlement and rehabilitation of people; its problems and concerns. Case studies.
- Environmental ethics: Issues and possible solutions
- Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case studies.
- Wasteland reclamation
- Consumerism and waste products
- Environmental Laws: The Environment Protection Act, 1986; The Air (Prevention and Control of Pollution) Act, 1981; The Water (Prevention and control of Pollution) Act 1974; The Wildlife Protection Act, 1972; Forest Conservation Act, 1980.
- Issues involved in enforcement of environmental legislation
- Public Awareness

7 Hours

Human Population and Environment

- Population Growth and Variations among Nations
- Population Explosion
- Human Rights
- Value Education
- HIV / AIDS
- Women and Child Welfare
- Role of Information Technology in Environment and Human Health
- Case Studies

Field Work

- Visit to a local area to document environmental assets river/ forest/ grassland/hill/mountain
- Visit to a local polluted site Urban / Rural / Industrial / Agricultural
- Study of common plants, insects, birds
- Study of simple ecosystems-Pond, river, hill slopes, etc (Field work equal to 5 lecture hours)

10 Hours

- 1. Odum, EP. Basic Ecology. Japan: Halt Saundurs, 1983.
- 2. Botkin, DB, and Kodler EA. Environmental Studies: The Earth as a living planet. New York: John Wiley and Sons Inc., 2000.
- 3. Singh, JS, Singh, SP, and Gupta SR. Ecology, Environment and Resource Conservation. New Delhi: Anamaya Publishers, 2006.
- 4. De, AK. Environmental Chemistry. New Delhi: Wiley Eastern Ltd., 1990.
- 5. Sharma, PD. Ecology and Environment. Meerut Rastogi Publications, 2004

Course Title:	Engine	Engineering Drawing			Р	Cr	
Course Code:	MEC1	IEC101A			4	4	
Course Outcome:	CO1	Learn a universal language for engineers.	_earn a universal language for engineers.				
After completion of course, the students	CO2	Learn the concept of first angle and third angle projection.					
should be able to	СОЗ	Learn to develop lateral surface for engineering objects.					
CO4 Learn to read drawing, use and application of various line ty						i	
	CO5	Projection of solids					

Drawing Techniques

Introduction to drawing instruments, various types of lines and their convention, principles of dimensioning, Engineering symbols, Gothic lettering in single stroke as per SP-46 code (Vertical and inclined)

Scales

Concept of scaling, construction of plane and diagonal scales

20 Hours

Projection of Points

Concept of plane of projections (Principle planes), First and third angle projections; projection of points in all four quadrants, shortest distance problems

Projection of Lines and Planes

Projection of line parallel to both planes, perpendicular to one plane, inclined to one and both the reference planes and their traces. Plane perpendicular to one plane inclined to one and both the reference planes and their traces. Concept of profile plane and auxiliary planes, To find the true length, α , β , θ and Φ .

22 Hours

Projection of Solids

Right and oblique solids; solids of revolution and polyhedrons, projection of solid with axis perpendicular to one plane and parallel to one or both reference planes. Projection of solid with axis inclined to one or both reference planes.

Sectioning of Solids

Theory of sectioning, types of section planes, their practice on projection of solids, Sectioning by auxiliary planes, to find true section of truncated solids.

16 Hours

Development of Surfaces

Method of Development, Development of surfaces: Parallel line and Radial line method. Development of oblique solids, Development of curved surfaces.

Orthographic and Isometric Views

Draw orthographic views from isometric view or vice-a-versa, Missing line and missing view

18 Hours

- 1. Jolhe, A.J., "Engineering Drawing", Tata McGraw-Hill, New Delhi.
- 2. Gill, P.S., "Engineering Drawing", S.K. Kataria and Sons, Ludhiana
- 3. French T.E. and Vierck, C.J., "Graphic Science", McGraw-Hill, New York
- 4. Zozzora F., "Engineering Drawing", McGraw Hill, New York

Course Title:	Basic	Communication Skills	L	Т	Р	Cr
Course Code:	ENG1	51	3	0	0	3
Course Outcome:	CO1	Improve their writing skills as well as will enrich th	neir v	vord	l pov	ver.
After completion of course, the students	CO2	Applied Grammar (Socio-Cultural Context)				
should be able to	СОЗ	Reading (Communicative Approach to be follow	wed))		
	CO4	Essay Writing and Letter Writing				
	CO5 Group Discussion & Facing an Interview					
Interjection 2. Tenses (Rul	les and lan, Coust, Ough		n, C	onju	inctio	n,
_				Н	ours	
1. J M 2. Anto	Synge: I on Chek	ive Approach to be followed) Riders to the Sea (One Act Play) hov: Joy (Short Story) kanand: The Secret of Work (Prose)				
Writing				Н	ours	
1. Essay V 2. Report \	Vriting	nd Letter Writing				
				Н	ours	
Unit D						
				Н	ours	
Suggested Books:						

- 1. Kumar, Sanjay and PushpLata. Communication Skills. India: OUP, 2012. Print.
- 2. Vandana, R. Singh. *The Written Word* by. New Delhi: Oxford University Press, 2008. Print.
- b. Websites
- 1. www.youtube.com (to download videos for panel discussions). Web.
- 2. www.letterwritingguide.com. Web.
- 3. www.teach-nology.com.Web.
- 4. www.englishforeveryone.org.Web.
- 5. www.dailywritingtips.com.Web.
- 6. www.englishwsheets.com.Web.
- 7. www.mindtools.com.Web.

• •
Ś
Ţ
\subseteq
Φ
Ξ
· <u>=</u>
$\overline{}$
Ψ
<u>Q</u>
×
ÚΪ
ш
4
0
77
<u>.v</u> ,

Course Title:	Chemi	Chemistry Laboratory			Р	Cr
Course Code:	CHE1	CHE152			2	1
Course Outcome:	CO1	Use of spectrometers				
After completion of course, the students	CO2	Determining strength/ Hardness of solutions				
should be able to	СОЗ	Determining surface tension of liquid				
	CO4	Determining flesh and fire point				
	CO5	Determining viscosity				

- 1. Verify Lambert Beer's law using spectrophotometer and CoCl₂ or K₂Cr₂O₇ solution.
- 2. Determine the strength of HCl solution by titrating against NaOHsolutionconductometerically.
- 3. Determination of the strength of HCl solution by titrating against NaOH using pH meter.
- 4. Determination of total hardness of water (tap) using standard EDTA solution and Eriochrome black T indicator.
- 5. Determination of alkalinity of water.
- 6. Determination of surface tension of given liquid by using Stalagmometer.
- 7. Determination of residual chlorine in a water sample.
- 8. Determination of Flash & Fire point of given a given lubricating oil by Pensky-Marten's apparatus.
- 9. Determination of the viscosity of given lubricating oil by using Redwood Viscometer.
- 10. Preparation of a polymer phenol/urea formaldehyde resin.
- 11. Determination of moisture, volatile matter and ash content in a given sample of coal by proximate analysis.
- 12. Determination of dissolved oxygen present in given sample of water.

Course Title:	Comp Lab	outer Fundamentals and Programming	_	Т	Р	Cr		
Course Code:	CSE1	CSE103			2	1		
Course Outcome: After completion of	CO1	Practical know-how of various internal Hardware components of a computer	and external					
course, the students should be able to	CO2	Introduction to Operating Systems;						
	СОЗ	MS-Word, MS-Excel, MS-Power point						
	CO4	Concept of programming Language						
	CO5	Concept of Internet/IOT						
This course provides a	practica	al aspect of Circuit Analysis using Ohm's law, I	Kircl	nhof	f's l	aws		

and network theorems, to understand the constructional detail of Electrical machines.

List of Experiments:

- 1. Practical know-how of various internal and external Hardware components of a computer (including basic working of peripheral devices).
- 2. Introduction to Operating Systems; installing Windows; basics of windows.
- 3. Working knowledge of Internet.
- 4. Introduction to word processor and mail merge.
- 5. Introduction to MS-Excel.
- 6. Working on MS-PowerPoint.
- 7. Introduction to basic structure of C program, utility of header and library files.
- 8. Implementation of program related to the basic constructs in C
- 9. Programs using different data types in C
- 10. Programs using Loops and Conditional Statements in C
- 11. Programs using functions by passing values using call by value method.
- 12. Programs using functions by passing values using call by reference method.
- 13. Programs using arrays single dimension in C.
- 14. Program to implement array using pointers
- 15. Programs related to string handling in C

Course	Title:	Basic	Communication Skills Lab	L	Т	Р	Cr	
Course	Code:	ENG1	ENG152			2	1	
After completion of above			Students will get exposure to speaking thro above-mentionedinteractive exercises.	ugh	the			
course, should b	the students e able to	CO2	they will develop a technical understanding learning software, which will further in communicative skills.	_		_	\sim	
		CO3	Understanding Video editing					
	CO4 Impact of role play in concept visualization							
		CO5	Importance of group discussion					
ıts:	Unit - A Spea	king/L	istening					
List of Experiments:	1. Movie-	Clippin	gs			(10 Hours)		
of Exp	2. Role Plays) urs)	
List	3. Group	Discuss	sions			(10 Hoi	urs)	

Course	Title:	Engine	eering Mathematics-II	L	Т	Р	Cr					
Course	Code:	MTH:	MTH152A									
Course	Outcome:	CO1	Understanding Functions of Complex Variables									
After completion of course, the students should be able to		CO2	Understanding Integral Calculus/ Multiple Integrals									
		СОЗ	UnderstandingVector Calculus:									
		CO4	Understanding Vector differential operators									
		CO5	A Convergence and divergence of series and its in-depth analysis									
t A	Functions of Complex Variables: Complex Numbers and elementary functions of complex variable De-Moivre's theorem and its applications. Real and imaginary parts of exponential,											

logarithmic, circular, inverse circular, hyperbolic, inverse hyperbolic functions of complex variables.Summation of trigonometric series. (C+iS method).

13 Hours

 $\mathbf{\omega}$

Integral Calculus: Rectification of standard curves; Areas bounded by standard curves; Volumes and surfaces of revolution of curves;

Multiple Integrals: Double and triple integral and their evaluation, change of order ofintegration, change of variable, Application of double and triple integration to find areas and volumes. Centre of gravity and Moment of inertia

15 Hours

C

Vector Calculus: Scalar and vector fields, differentiation of vectors, velocity and acceleration.

Vector differential operators: Del, Gradient, Divergence and Curl, their physicalinterpretations. Line, surface and volume integrals.

Application of Vector Calculus: Flux, Solenoidal and Irrotational vectors. Gauss Divergencetheorem. Green's theorem in plane, Stoke's theorem (without proofs) and their applications

15 Hours

Δ

Infinite Series: Convergence and divergence of series, Tests of convergence (without proofs): Comparison test, Integral test, Ratio test, Raabe's test, Logarithmic test, Cauchy's root test and Gauss test. Convergence and absolute convergence of alternating series, Uniform Convergence and Power Series

14 Hours

- 1. Grewal, B.S., Higher Engineering Mathematics. New Delhi: Khanna Publication, 2009
- 2. Kreyszig, Erwin, Advanced Engineering Mathematics. New Delhi: Wiley Eastern Ltd., 2003.
- 3. Jain, R K, and K lyengar S R., Advanced Engineering Mathematics, New Delhi: Narosa Publishing House, 2003.
- 4. Thomas, George B. and Finney Ross L., Calculus and Analytic Geometry. New Delhi Addison Wesley, 1995

Course Title:	ENGIN	IEERING PHYSICS	L	Т	Р	Cr				
Course Code:	PHY15	51B	4 0 0							
Course Outcome:	CO1	Understanding principle of optics								
After completion of course, the students should be able to	CO2	Understanding LASER and fibre optics	optics							
	СОЗ	Understanding concept of dielectrics								
	CO4	Understanding quantum computing								
	CO5	Understanding super conductivity								

PHYSICAL OPTICS:

Interference: Division of wave front, Fresnel's biprism, division of amplitude, Newton's rings and applications.

Diffraction: Difference between Fraunhofer and Fresnel diffraction, Fraunhofer diffraction through a slit, plane transmission diffraction grating, its dispersive and resolving power.

Polarization: Polarized and unpolarized light, double refraction, Nicol prism, guarter and half wave plates.

15Hours

$\mathbf{\omega}$

LASER: Spontaneous and stimulated emission, Laser action, Characteristics of laser beam, concept of coherence, He-Ne laser, Semiconductor laser, Ruby laser and applications, Holography.

FIBRE OPTICS: Propagation of light in fibres, numerical aperture, single mode and multimode fibres, applications

15 Hours

0

DIELECTRICS: Molecular Theory, polarization, displacement, susceptibility, dielectric coefficient, permittivity, relations between electric vectors, Gauss's law in the presence of a dielectric, energy stored in an electric field, Behavior of dielectric in alternating field and clausius-Mossotti equation.

13 Hours

QUANTUM MECHANICS: Difficulties with Classical physics, Introduction to quantum mechanics simple concepts, Black Body radiation, Planck's Law of radiation and its limitations, Group velocity and phase velocity, Schrodinger's wave equations and their applications.

NANOPHYSICS: Introduction to Nanoscience and Nanotechnology, Electron confinement, Nanomaterials, Nanoparticles, Quantum structure, CNT, Synthesis of Nanomaterials and Application of Nanomaterials.

SUPER CONDUCTIVITY: Introduction (experimental survey), Meissner effect, Type I and type II superconductors, London equation, Elements of BCS theory, Applications of superconductors.

18 Hours

- 1. Sear, F.W. Electricity and Magnetism. London: Addison-Wesley, 1962.
- 2. Resnick and Halliday. Physics.New York: Wiley, 2002.
- 3. Lal,B. and Subramanyam, N.A Text Book of Optics. New Delhi: S. Chand and Company Limited,
- 4. Jenkins, and White. Fundamental of Physical Optics. New York: Tata McGraw-Hill, 1937.
- 5. Griffiths, D. Introduction to Electrodynamics, New Delhi: Prentice Hall, 1998.
- 6. Beiser, A. Perspective of Modern Physics. New Delhi: McGraw Hill Ltd., 2002.
- 7. Verma, N.K Physics for Engineers. New Delhi: Prentice Hall, 2014.

Course Title:	Mecha	nical Engineering Fundamentals	L	Т	Р	Cr					
Course Code:	MEC1	03	4	0	0	4					
Course Outcome: After completion of course, the students should be able to	CO1	Know about the different thermodynamic processes and design principles.									
	CO2	Know about the different pressure-measuring units and devices.									
	CO3	Recognize the different power transmission devices, machine elements, and their applications.									
	CO4	Know about various power producing and p devices and their working.	and power absorb								
	CO5	Basic know how of IC Engines									

Fundamental Concepts of Thermodynamics Introduction, Thermodynamic System and its types, Boundary and its types, Surroundings, Thermodynamic properties, State, Path, process and cycles, Thermodynamic Equilibrium, Working Substance, Microscopic and Macroscopic Analysis, Units and Dimensions, Quasi Static Process, Reversible and Irreversible processes, Point Function and Path Function, Mechanical and Thermodynamic work, P-dv Work (Displacement Work), Work is a Path Function, Equations for work done in various processes

Laws of Thermodynamics: Zeroth law of Thermodynamics, Temperature, Thermometry (Measurement of temperature), Temperature Scales, Energy, Potential and Kinetic Energies at Micro and Macro Level, Internal Energy, Law of conservation of energy, Joule's Experiment, First law of thermodynamics (Open and Closed System), Energy - A property of system, Enthalpy, Entropy, Heat, Heat vs Temperature, specific heat, Heat Capacity, Specific heat at constant volume, Specific heat at constant pressure, Adiabatic Index, Limitations of first law of thermodynamics

15 Hours

Heat Transfer: Introduction, Heat Transfer vs Thermodynamics, Applications, Thermal Conductivity, Thermal Resistance, Modes of heat transfer, Spectrum of electromagnetic radiation, Surface emission properties, Absorptivity, Reflectivity and Transmissivity, Fourier law, Newton's law of cooling, Stefan Boltzmann's Law, Heat Exchangers (Applications, Selection, Classification), Thermal Insulation (Properties of insulation, Types of Insulations, Thermal Insulating Materials)

Power Absorbing Devices: Power Absorbing Devices, Difference between Hydraulic pump, Air compressor, Fan, Blower, Pump (Function, Selection, Applications), Classification of Pump, Positive displacement and Dynamic Pumps, Reciprocating Pumps and its types, Rotary Pumps and its types, Centrifugal Pump, Axial Pump

Power Producing Devices Boiler: States of matter, Changing State of Matter, Sublimation, Effect of temperature during change of Phase, Steam boiler, Application, Classification of boilers, Types of boilers (Brief Description), Essentials of a good boiler, Advantages of superheating the steam, Comparison between Water tube and Fire tube boilers, Function of boiler Mountings and Accessories

Turbines: Turbine, Classification based on working fluid, Classification of hydraulic turbines, Selection of hydraulic turbines, Impulse Turbines (Pelton Wheel/ Turgo/ Cross Flow), Reaction Turbines (Francis/ Kaplan/ Propeller)

Internal Combustion Engines: Heat Engine, Types of Heat Engine, Advantages, Disadvantages and Applications, Classification of IC Engine, Engine Components (Location, Function and Material), Basic Terminology used in IC engine, Four stroke Cycle Engines (SI and CI), Two stroke Cycle Engines (SI and CI)

11 Hours

Principles of Design: Need of design, Product Life Cycle, Material properties and selection, Factors affecting material selection, Stress and Strain and its types, Hooke's law, Modulus of Elasticity, Longitudinal and Lateral Strain, Poisson's ratio, Stress- Strain Curve for ductile material and brittle material, Factor of Safety, Centre of Gravity, Centroid, Centroid of areas of plain, Figures (Without Derivation), Centroid of areas of composite sections (Without Derivation), Moment of Inertia, Radius of gyration, Theorem of perpendicular axis, Theorem of parallel axis, MI of L, I and T sections, [Simple problems on above topics]

Power Transmission Devices and Machine Elements: Individual and group drive system (advantages and Disadvantages), Belt drive (Types: V and Flat Belts and their Applications, Advantages and Disadvantages), Ropes drive (Types: Fiber and Wire Ropes and their Applications, Advantages and Disadvantages), Chain drive (Applications, advantages and Disadvantages, Sprockets), Gear drive (Types of Gears), Power transmission shafts, Types of shafts, Application of shafts, Axle, Keys (Function, Classification), Coupling (Function, Classification: Rigid and Flexible), Flanged coupling, Oldham's coupling, Universal coupling, Bearings and their types, Flywheel construction and types

13 Hours

- 1. Rajan T.S. Basic Mechanical Engineering, New Delhi: New Age Publishers.
- 2. Singh Sadhu Principles of Mechanical Engineering, New Delhi: S Chand Publishers.
- 3. Shankar V.P., Basic Mechanical Engineering, New Delhi: Laxmi Publishers.
- 4. Phthak G. K., Basic Mechanical Engineering, New Delhi: Rajsons Publications.
- 5. Kumar Parveen, Basic Mechanical Engineering, New Delhi: Pearson Education

Course Title:		Basic	Electrical Engi	L	Т	Р	Cr						
Course Code:		ELE10	5	5 4 0									
Course Outcom		CO1	Apply the known	•	ctrical Engineering prin	ncipl	es to	to solve					
After completion of course, the students should be able to		CO2	Formulate and principles of e	•	trical circuits. Underst ism	and	o o description of o o o o o o o o o o o o o o o o o						
CO3 CO4 CO5			Understand electrical machines and transformers.										
			Identify and select various electrical machines according to the applications.										
			Apply the ethical principles for troubleshooting & installation of safety devices as per norms of										
202	202 CO1 CO2 CO3 CO4 CO5												
RBTL No.	L1, L2		L2, L4	L2	L3	L3	3						

CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):

00-			Pr	ogram	Outcon	nes (PC	Os)/Pro	gram S	Special	Outcon	ne (PS	O's)		
COs	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2
CO1	3	2	1	1	1	-	-	1	2	1	-	3	3	1
CO2	3	3	-	2	-	1	-	-	2	-	-	-	3	1
CO3	3	1	2	3	1	-	1	-	2	1	1	3	3	1
CO4	3	ı	2	-	ı	1	-	1	2	1	-	2	3	1
CO5	2	2	3	1	1	1	_	-	2	1	_	2	2	1

4

D.C Circuit Analysis: Voltage source, current source, dependent and independent sources, analysis of D.C circuit by KCL and KVL, Nodal and Mesh analysis, Superposition theorem, Maximum Power Transfer Theorem, Thevenin and Norton Theorems.

10 Hours

 $\mathbf{\omega}$

A.C Circuit Analysis: Review of single phase A.C. circuit under sinusoidal steady state, RMS Value, Average Value, Form factor, Peak factor solution of RL, RC, R.L.C. Series circuit, the j operator, complex representation of impedance, solution of series circuit, series & parallel resonance, 3 phase A.C. Circuit, star and delta connections, line and phase quantities solution of 3 phase circuits, balance supply voltage and balanced supply voltage and balance load, Phasor diagram, power triangle, measurement of power and power factor by wattmeter method.

C

Magnetic Circuit & Transformers: Review of magnetic circuits, B-H Curve, saturation leakage and fringing. Hysteresis and eddy currents. Single phase transformer, basic concepts constructional detail, emf equation of single-phase transformer, voltage, current Transformation equivalent circuit under no load condition, Ideal transformer and its phasor diagram, voltage regulation, losses and efficiency.

Autotransformer: its construction, advantages, disadvantages and applications.

15 Hours

Rotating Electrical Machines: Basic concepts, working principle and general construction of DC machines (motor/generators), torque and EMF expression. Generation of rotating magnetic fields, Construction and working of a three-phase induction motor, Significance of torque-slip characteristic. Loss components, efficiency, starting, and speed control of induction motor.

Electrical Installations: Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing. Types of Batteries, Important Characteristics for Batteries. Various faults in Batteries, Elementary calculations for energy consumption, power factor improvement and battery backup.

15 Hours

- 1. Edward, Hughes Hughes Electrical and Electronic Technology. Pearson Education India, 2010.
- 2. Nagsarkar, T. K., and M. S. Sukhija. Basic electrical engineering. Oxford Univ. Press, 2005.
- 3. Nagrath, I. J. Basic Electrical Engineering. Tata McGraw-Hill Education, 2001.
- 4. Mittal, VN MittleArvind. Basic electrical engineering. Tata McGraw-Hill, 2004.
- 5. Theraja, A. K. "Electrical technology." (2006).
- 6. Naidu, M. S., and S. Kamakshaiah. Introduction to electrical engineering. Tata McGraw-Hill Education, 1995.
- 7. Theraja, B. L., and R. S. Sedha. "Principles of electronic devices and circuits." Chand & (2004).
- 8. Del Toro, Vincent. Electrical Engineering Fundamentals. Prentice Hall, 1972.
- 9. Del Toro, Vincent. Principles of Electrical Engineering. Prentice Hall, 1972.

Course	Course Title: Human Values and General Studies L												
Course	Code:	SGS10	07B	4	0	0	0						
Course	Outcome:	CO1	1 Concept of Human value and ethics										
After completion of course, the students		CO2	CO2 Value base living : concept										
should b	e able to	СОЗ	Glimpses of history and geography										
		CO4	Preliminary general science										
		CO5	Current affairs										
Course	Objective:	Netwo	burse provides basic knowledge of DC and AC Circ rk Theorems, Magnetic Circuits and various elec ation e.g. MCB, ELCB, MCCB, DC Machines, AC Ma	trica	ıl de	vice							
Learnin	g Outcomes:	AC cir princip transfo the ap	the knowledge of Electrical Engineering principles cuits. Formulate and analyze electrical circuits. Uses of electromagnetism to implement in electrical machinal principles. Apply the ethical principles for troution of safety devices as per norms of engineering particulars.	Inde al m nes ouble	rstar achii accc esho	nd b nes ordin	asic and g to						
	Human Values												
	Concep	pt of Human Values: Meaning, Types and Importance of Values.											
	Value E	Education: Basic guidelines forvalue education											
	Value c	risis and its redressal											
Unit A	Being Good an	d Respo	Responsible										
L E	Self-Exp	loration and Self Evaluation											
	Acquirin	Core Values for Self Development											
	Living in	Harmor	ny with Self, Family and Society										
	Values e	enshrine	d in the Constitution: Liberty, Equality										
	Fraternit	y and F	undamental Duties.										
					15	Hou	ırs						
	Value – based l	iving											
	Vedic va	alues of	life										
	Karma \	na Yoga andJnana Yoga											
it E	Ashta-Margaand Tri-Ratna												
Unit B	Ethical Living:												
	Persona	I Ethics											
	Professi	onal Eth	ics										
	Ethics in Education												
					13	Hou	irs						

General Geography

World Geography

The Universe, The Solar System, The Earth, Atmosphere, The World we live in, Countries rich in Minerals, Wonders of the World, Biggest and Smallest.

Indian Geography

Location, Area and Dimensions, Physical Presence, Indian States and Union Territories, Important sites and Monuments, Largest-Longest and Highest in India.

General History

Glimpses of India History, Ancient Indian, Medieval India, Modern India, Various Phases of Indian National Movement, Prominent Personalities, Glimpses of Punjab history with special reference to period of Sikh Gurus

Glimpses of World History

Important Events of World History, Revolutions and Wars of Independence, Political Philosophies like Nazism, Fascism, Communism, Capitalism, Liberalism etc.

Indian Polity: Constitution of India

Important Provisions, Basic Structure, Union Government, Union Legislature and Executive, State Government: State Legislature and Executive, Indian Judiciary, The Election Commission, Panachayati Raj System, RTI etc.

General Economy

The process of liberalization, privatization, globalization and Major World Issues, Indian Economy, Indian Financial System, Major Economic Issues, Economic Terminology.

18 Hours

General Science

General appreciation and understandings of science including the matters of everyday observation and experience, Inventions and Discoveries

Sports and Recreation

The World of Sports and recreation, Who's Who is sports, Major Events, Awards and Honours. Famous personalities, Festivals, Arts and Artists

Current Affairs

National and International Issues and Events in News, Governments Schemes and Policy **Decisions**

Miscellaneous Information Who is who

Books and Authors, Persons in News, Awards and Honours, Abbreviations and Sports

11 Hours

- Human Values, A N Tripathi, New Age International Publishers, New Delhi, Third Edition, 1. 2009
- 2. Professional Ethics, R. Surbiramanian, Oxford University Press, New Delhi, 2013.
- 3. Human Values and Professional Ethics, RishabhAnand, SatyaPrakashan, New Delhi, 2012
- Human Values and Professional Ethics, SanjeevBhalla, SatyaPrakashan, New Delhi, 2012. 4.
- Human Values and Professional Ethics, RituSoryanDhanpatRai& Co. Pvt. Ltd., First Edition, 5. 2010.
- 6. Human Values and Professional Ethics by Suresh Jayshree, RaghavanB S, S Chand & Co. Ltd. 2007.
- 7. Human Values and Professional Ethics, Yogendra Singh, AnkurGarg, Aiths publishers, 2011.
- Human Values and Professional Ethics, Vrinder Kumar, Kalyani Publishers, Ludhiana, 2013. 8.
- 9. Human Values and Professional Ethics, R R Gaur, R. Sangal, GP Bagaria, Excel Books, New Delhi 2010.
- 10. Values and Ethics, Dr.BramwellOsula, Dr.SarojUpadhyay, Asian Books Pvt. Ltd., 2011.
- Indian Philosophy, S. Radhakrishnan, George Allen &Unwin Ltd., New York: Humanities 11. Press INC, 1929.
- Essentials of Hinduism, Jainism and Buddhism, A N Dwivedi, Books Today, New Delhi -12. 1979
- Dayanand: His life and work, SurajBhan, DAVCMC, New Delhi 2001. 13.
- Esence of Vedas, KapilDevDwivedi, Katyayan Vedic SahityaPrakashan, Hoshiarpur, 1990. 14.
- Vedic Concepts, Prof. B BChaubey, Katyayan Vedic SahityaPrakashan, Hoshiarpur, 1990. 15.
- Advance Objective General Knowledge, R. S. Aggarwal, S. Chand Publisher (2013) 16.
- 17. Concise General Knowledge Manual 2013, S. Sen, Unique Publishers, 2013
- 18. Encyclopedia of General Knowledge and General Awareness by R P Verma, Penguin Books Ltd (2010)
- General Knowledge Manual 2013-14, Edgar Thorpe and Showick Thorpe, The Pearson, 19. Delhi.
- 20. General Knowledge Manual 2013-14, MuktikantaMohanty, Macmillan Publishers India Ltd., Delhi.
- India 2013. Government of India (Ministry of Information Broadcasting). Publication Division. 21.
- Manorama Year Book 2013-14, MammenMethew, Malayalam Manorama Publishers, 22. Kottavam, 2013.
- Spectrum's Handbook of General Studies 2013-14, Spectrum Books (P) Ltd., New Delhi **CURRENT AFFAIRS**

Magazines

Economic and Political Weekly, Yojna, the Week, India Today, Frontline, Spectrum. Competition Success Review, Competition Master, Civil Services Chronicle, Current Affairs, World Atlas Book

Newspapers

The Hindu, Times of India, The Hindustan Times, The Tribune

Course Title:	Manuf	acturing Practice	L	Т	Р	Cr				
Course Code:	MEC1	04	0	0	4	2				
Course Outcome: After completion of	CO1	Explain and strictly adhere to the rules and safet work in the mechanical workshop	y reį	gulat	tions	for				
course, the students should be able to	facturing equipment in the mechanical									
	CO3	Create and document a typical process plan for manufacturing a product in the mechanical workshop								
	CO4	Read and use a manufacturing drawing as a definition for manufacturing of a part								
	ture awir	•	rt fu	lfills						

CARPENTRY SHOP

- Preparation of half lap joint a)
- b) Preparation of Mortise and Tenon Joint
- Preparation of a Dove & Tail joint c)
- d) To prepare a White board duster

Welding Shop:

- Preparation of Joint by Arc Welding a)
- Preparation of Joint by using Gas Welding b)
- Preparation of Joint by MIG/TIG Welding c)
- d) Preparation of Joint by Spot/ Seam Welding

Smithy Shop

- a) To Forge the L – Hook
- b) To Forge a Chisel
- c) To Forge a Cube from a M.S Round
- d) To forge a screw driver

Fitting Shop

- a) Filing a dimensioned rectangular or square piece and prepare a sq. fitting
- Preparation of T fitting male part b)
- c) Preparation of U fitting Female part
- Internal thread Cutting in Square piece and external thread cutting on a rod and assembling as a paper weight

Foundry Shop:

- a) To make a Mould of solid pattern
- b) To prepare a mould of sleeve fitting using gating system
- c) To make a Mould of Split Pattern using Cope & Drag
- d) To check the Hardness of the Mould
- To check the Moisture Content in the Molding Sand e)
- f) To check the Compressive Strength of Molding Sand

Sheet-Metal Shop

- a) Preparation of a funnel from G.I. sheet
- b) Preparation of a book rack stand from G.I. Sheet
- c) Preparation of a leak proof tray with inclined edges from G.I. Sheet
- d) Preparation of a square pen stand from G.I. Sheet with riveting at corners

Machine Shop

- a) To make a job using step turning and grooving
- b) To make a job using knurling and threading
- c) To make a multi operation job on a Lathe machine

b) Layout of stair case wiring using two way switch

d) To make V – slot by using shaper machine

Electrical Shop

- a) Layout of electrical tube light wiring
- **DAV University, Jalandhar** Testing and rectification of simulated faults in electrical appliances such as 'Electric Iron' Ceiling Fan. Electric kettle
- To fabricate a circuit for the electrical wiring of, Fan with regulator and Bulb through a main switch and its testing using a series lamp

Course Title:	Engin	eering Physics Lab	L	Т	Р	Cr					
Course Code:	PHY15	52A	0	0	2	1					
Course Outcome:	CO1	Determination of Refractive Index of the Material									
After completion of course, the students	CO2	Determination of wave length of the Material									
should be able to	СОЗ	Determination of fuscous length of lences									
	CO4	Calculation of unknown Resistance/ Inductance	e/ Ca	apac	itan	се					
	CO5	study the Planck's constant by using photoelectric cell method.									

Experimental skills:General and Precautions for measurements handling equipment, representation of measurements, Fitting of given data to a straight line, and Error analysis, Significant figures and interpretation of results.

- 1. To determine the Refractive Index of the Material of a given Prism using Sodium Light.
- 2. To determine the Dispersive Power and resolving power of the Material of a given Prism using Mercury Light.
- 3. To determine wavelength of sodium light using Newton's Rings.
- 4. To determination Wavelength of Sodium Light using Michelson's Interferometer.
- 5. To determine the wavelength of Laser light using Diffraction of Single Slit.
- 6. To determine the wavelength of (1) Sodium and (2) Mercury Light using Plane Diffraction Grating.
- 7. To determine the (1) Wavelength and (2) Angular Spread of HeNe Laser using Plane Diffraction Grating.
- 8. To study the wavelength of spectral lines of sodium light using plane transmission grating.
- 9. To study the specific rotation of sugar solution Laurent's half shade polarimeter
- 10. To study the numerical aperture and propagation losses using HeNe laser Optical fibre set up.
- 11. To compare the focal length of two lenses by Nodal slide method.
- 12. To find the unknown low resistance by Carey Foster bridge.
- 13. To determine the beam divergence of the HeNe laser.
- 14. To study the Meissner's effect in superconducting sample.
- 15. To study the Faraday law of electromagnetic induction.
- 16. To study the capacitance by flashing/quenching of Neon bulb kit
- 17. To compare the two unknown capacitances of two capacitors by using DeSauty's bridae.
- 18. To find our out the unknown inductance by using the Anderson's bridge method.
- 19. To study the numerical aperture and propagation losses for He-Ne laser by using the optical fibre set up for
- 20. To study the Planck's constant by using photoelectric cell method.

Course Tit	le:			Basic	c Ele	ctrica	al Er	iginee	ring L	abor	atory		L	Т	Р	Cr	
Course Co	de:			ELE1	06								0	0	2	1	
Course Ou	itcon	ne:		CO1	Ide	ntify C	C an	d AC cir	cuits				<u>'</u>				
		studer	of nts	CO2				d analyz		trical c	rcuits	for v	oltage,	cur	rent	and	
				CO3	Арі	•		cal prin devices	•			_				of	
	CO4 Interpret basic principles of electromagnetism electrical machines and transformers.											n to ir	nple	men	t in		
Recognize and select various electrical machines applications.										es acco	ordir	ng to	the				
RBTL No.	Мар	ping:															
L1(Remer		ing),	L2((Under	stanc	ding),	L3	(Applyir	ıg), l	L4(Ana	ılysing)	, L5	5(Evalu	atin	g),		
L6(Creating COs	ng)	CO1			CO2	<u> </u>		CO3		CO	4		CO5	05			
RBTL No.		L1,L	2		L2,L	3		L3		L4			L5				
		· · ·		(Strong			ım(2) / Wea	k(1) inc		streng			tion):		
				Progra	am Oı	utcom	es (P	Os)/Pro	gram S	Specific	: Outco	mes(F	POs)				
_	_		_					1		1		1					
	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO:	1	PSC)2	
CO1	3	3	1	2	-	1	-	-	3	2	1	3	1		1		
CO2	3	3	-	2	1	-	-	1	3	-	-	3	2		1		
CO3	3	-	1	2	-	1	2	-	-	2	1	3	2		2		
CO4	3	3	-	-	1	-	-	1	3	2	3	-	3		3		
CO5	3	-	1	2	-	1	-	-	2	-	3	3	2		1		

This course provides a practical aspect of Circuit Analysis using Ohm's law, Kirchhoff's laws and network theorems, to understand the constructional detail of Electrical machines.

List of Experiments:

- To verify Ohm's Law, Kirchhoff's Current Law and Kirchhoff's Voltage Law. 1.
- To verify Thevenin's and Norton's theorems. 2.
- 3. To verify Superposition theorem.
- 4. To verify Maximum Power Transfer theorem.
- 5. To study frequency response of a series R-L-C circuit and determine resonant frequency and Q-factor for various values of R, L and C
- 6. To study frequency response of a parallel R-L-C circuit and determine resonant frequency and Q-factor for various values of R, L and C.
- 7. To perform direct load test of a transformer and plot efficiency versus load characteristics.
- 8. To perform open circuit and short circuit test on transformer.
- 9. To perform speed control of DC motor.
- 10. Measurement of power in a three phase system by two-wattmeter method.
- 11. Basic safety precautions. Introduction and use of measuring instruments voltmeter, ammeter, multi-meter, oscilloscope. Real-life resistors, capacitors and inductors.
- 12. Demonstration of cut-out sections of machines: dc machine (commutator-brush arrangement), induction machine (squirrel cage rotor)
- 13. To study various starting methods of three phase induction motor.
 - a. DOL Starter
 - b. Auto- transformer starter
 - c. Star-delta starter
- 14. To study speed control of three phase induction motor. (V/F control)

Course Title:	Netwo	rk Analysis & Sy	nthesis		L	Т	Р	Cr				
Course Code:	ELE20	1 A			4	0	0	4				
Course Outcome:	CO1	be familiar with	the fundamental of	concepts of netwo	ork a	naly	sis.					
After completion of course, the students	CO2	know and apply	the network theo	rems.								
should be able to	СОЗ	know about Net	now about Network topologies and Graph Theory									
	CO4	determine two p	ort network paran	neters and syste	m re	spor	nses					
	CO5		the fundamental s and learn vario					port				
RBTL No. Mapping:												
L1(Remembering), L2(Und	derstand	ding), L3(Applying	ng), L3(Applying), L4(Analysing), L5(Evaluating), L6(Creating)									
COs CO1		CO2	CO3	CO4	CC)5						
RBTL No.		L3	L2	L4	L5	Í						

CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):

COs	Program Outcomes (POs)/Program Special Outcome (PSO's)													
	РО	PO PS PS												
	1	2	3	4	5	6	7	8	9	10	11	12	O1	O2
CO1	3	2	2	-	-	1	-	-	1	1	1	3	1	1
CO2	3	1	2	-	2	-	-	-	3	-	-	2	-	1
CO3	3	3	-	3	3	1	-	-	3	2	1	-	-	2
CO4	3	2	3	2	-	1	-	-	2	2	-	3	-	1
CO5	3	2	3	-	3	1	-	-	2	-	1	2	-	1

Circuit Concepts and Network Theorems: Energy Sources, Independent and dependent sources, Source transformation, star & delta transformation, Kirchhoff's Laws, Nodal and Mesh analysis in electric circuits, A.C. and D.C. Network Theorems: Thevenin's theorem, Norton's theorem, Superposition theorem, Maximum Power Transfer theorem, Millman's theorem, Reciprocity theorem, Substitution theorem, Compensation theorem, Tellegen's theorem, Numerical Problems. Three-phase circuits. Mutual coupled circuits, Dot Convention in coupled circuits.

12 Hours

 $\mathbf{\omega}$

Graph Theory: Concept of network graph, terminology used in network graph, relation between twigs and links, formation of incidence matrix, tie-set matrix, cut-set matrix, and Kirchhoff's voltage law into topological form, Kirchhoff's current law into topological form, relationship between branch voltage matrix, twig voltage matrix and node voltage matrix, relation between branch current matrix and loop current matrix.

Two Port Network Analysis: Introduction, Network elements, classification of network, network configuration, Open Circuit Impedance Parameters, Short-Circuit admittance parameters, Hybrid Parameters, ABCD Parameters, Inter-Relationships between parameters of two port network, Expression of Input-Output impedances in terms of two port parameters, different types of interconnections of two port networks.

Time and Frequency Domain Analysis: Representation of basic circuits in terms of generalized frequency and their response, Laplace transform of shifted functions, transient and steady response.

14 Hours

Network Synthesis: Network functions, Impedance and Admittance function, Transfer functions, Hurwitz Polynomials, Positive real functions, LC Network Synthesis, Foster's Canonical Form, Relationship between transfer and impulse response, poles and zeros and restrictions, Network function for two terminal pair network, Sinusoidal network in terms of poles and zeros, Real liability condition for impedance synthesis of RL and RC circuits. Network synthesis techniques for 2-terminal network, Foster and Cauer forms.

Filters: Classification of filters, characteristics impedance and propagation constant of pure reactive network, Ladder network, T-section, π-section, terminating half section, Pass bands and stop bands, Design of constant-K, m-derived filters, Composite filters.

12 Hours

- 1. ChakrabortyAbhijitCircuit Theory 2nd Edition, DhanpatRai& Sons, 2001.
- 2. Bird John *Electrical Circuit Theory and Technology* 2nd Edition, Newness.
- 3. Chaudhury D. Roy Networks and Synthesis New Age International 2010.
- 4. Edminister J.A. *Electric Circuits* 4th Edition, Tata McGraw Hill, 2002.
- 5. Iyer T.S.K.V. Circuit Theory Tata McGraw Hill, 2006.
- 6. Mohan, Sudhakar Sham Circuits and Networks Analysis and Synthesis 2nd Edition, Tata McGraw Hill, 2005.
- Van Valkenberg, M.E. Network Analysis and Synthesis PHI learning, 2009.

CO5

L1, L2

CO4

L2

Course Title:	Gener	ation and Control of Power	L	Т	P	Cr							
Course Code:	ELE21	6	4	0	0	4							
Course Objective:	plant fo	ourse provides a comprehensive understanding or generating electricity. Various characteristics and ver plants.			•								
Course Outcome: After completion of	CO1	Understand the concepts of load, load curve and power plant economics											
course, the students should be able to	CO2	Identify the objective and design of Tariff.											
	CO3	Understand and interpret the concept of gene plants	ratio	n of	ene	ərgy							
	CO4	Understand automatic control of generation.											
	CO5	Apply the ethical principles for environmental constraints and their remedies in generation of power.											
RBTL No. Mapping:													
L1(Remembering), L2(Un	derstanding), L3(Applying), L4(Analysing), L5(Evaluating), L6(Creating)												

CO3

L1, L2

CO2

L2, L3, L5

000		Program Outcomes (POs)/Program Special Outcome (PSO's)													
COs	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	
	1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	
CO1	3	2	1	2	1	2	1	1	2	1	2	3	3	1	
CO2	3	3	1	1	-	2	-	1	2	-	2	2	3	1	
CO3	3	1	1	-	-	2	2	1	2	-	-	3	3	1	
CO4	3	-	1	-	-	-	-	3	2	-	-	2	3	1	
CO5	2	1	3	1	-	2	3	1	2	1	-	2	2	1	

Introduction: Electrical energy sources, organization of power sector in India, single line diagram of thermal, hydro and nuclear power stations. Classification of power plants in base load and peak load plants.

COs

RBTL No.

CO1

L1, L2, L4

Power Plant Economics: Capital cost of plants, annual fixed cost, operating costs and effect of load factor on cost of energy, depreciation.

Loads and Load curves: Types of load (fixed voltage loads, resistive loads, Inductive motor loads, Mechanical load), effect of load on supply voltage, Maximum demand, Group diversity factor, Peak diversity factor, Types of load, chronological load curves, load-duration Curve, mass curves, load factor, capacity factor, utilization factor, base load and peak load plants, load forecasting.

12 Hours

മ

Tariffs and power factor improvement: Objectives of tariff making, different types of tariff (domestic, commercial, agricultural and industrial loads). Need for power factor (p.f.) improvement, power factor improvement using capacitors, determination of economic power factor.

Hydroelectric plants: Choice of site, classification of hydroelectric plants, main parts and working of plants and their layouts.

Thermal power plants: Choice of site, main and auxiliary equipment fuel gas flow diagram, water stream flow diagram, working of power plants and their layout.

13 Hours

Nuclear power plants: Choice of site, classification of plants, main parts, layout and their working, associated problems.

Diesel power plants: Diesel plant equipment, diesel plant layout and their working, application of diesel plants.

Combined working of plants: Advantages of combined operation plant requirements of base load and peak load operation. Combined working of runoff river plant and steam plant. Concept of cogeneration, definition and scope.

13 Hours

Power station equipment and control: Excitation system- Purpose and requirements of excitation system, brushless excitation system, Voltage regulators - Function and characteristics of automatic voltage regulators, solid regulator. Speed Governing - Purpose of speed governing system. Hydraulic type, speed-governing system for steam turbines and steam turbines and hydro turbines. Automatic generation control - types of interconnection, advantages of interconnection, real and reactive power control, single area automatic generation control, automatic generation control for two area system, types of automatic generation control for interconnection power systems.

Pollution and environmental problems: Energy and environment, Air pollution, Aquatic impacts, nuclear plant and hydro plant impacts.

12 Hours

- 1. Deshpande M.V. Power Plant Engineering Tata McGraw Hill, 2004.
- 2. EI-Wakit M.M. Power Plant Engineering McGraw Hill, USA
- 3. Rajput R.K. Power Plant Engineering Luxmi Publications
- 4. Sharma P.C. Power Plant Engineering Kataria and Sons
- 5. Skrotzki B.G.A. and Vapot W.A. Power Station Engineering and Economy Tata McGraw-Hill
- 6. Arora S.C. and Dom Kundwar S. A course in Power Plant Engineering DhanpatRai.
- 7. Nag, P.K. Power Plant Engineering Tata McGraw Hill
- 8. Gupta B.R. Generation of Electrical Energy S. Chand, 1998.
- 9. Nagrath I.J. and Kothari D.P *Power System Analysis* Tata McGraw-Hill Publication.

Course Title:	Electri	cal Measurement and Instrumentation	L	Т	Р	Cr							
Course Code:	ELE20	9A	3	0	0	3							
Course Objective:	To ur engine	derstand the basic concepts of measuremer ering.	nts	in e	elect	rical							
Course Outcome: After completion of	CO1	acquire knowledge of generalized measurement s of measurement and various instruments	yste	m , ı	meth	ods							
course, the students should be able to	, the students convergant in construction and wor												
	СОЗ	acquire knowledge of the characteristics of measu	reme	ent s	yste	m.							
	CO4	be competent to handle various instruments for the of electrical quantities	he n	neas	uren	nent							
	CO5	be conversant in construction, working of electromechani indicating instruments and their use											

RBTL No. Mapping:

L1(Remembering), L2(Understanding), L3(Applying), L4(Analysing), L5(Evaluating), L6(Creating)

COs	CO1	CO2	CO3	CO4	CO5
RBTL No.	L1, L2,L4	L2,L3	L2,L4	L2, L3,L6	L3,L5

CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):

COs	Program Outcomes (POs)/Program Special Outcome (PSO's)													
	PO PS PS													
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2
CO1	3	2	1	2	2	2	-	-	1	3	2	1	1	1
CO2	3	3	3	2	2	2	1	-	-	2	2	-	2	2
CO3	2	3	3	2	1	2	-	1	1	2	2	2	2	2
CO4	1	2	_	-	2	2	1	-	1	-	-	2	2	2
CO5	2	3	2	3	1	-	-	1	-	1	-	1	-	1

Measurements and Measurement Systems: Measurements. significance measurements, methods of measurements, direct methods, indirect methods, instrument and measurement systems, mechanical, electrical and electronic instruments, classification of instruments, deflection and null type instruments- deflection type, null type, comparison of deflection and null type instruments, Analog and digital modes of operation, functions of instruments and measurement systems, applications of measurement systems, types of instruments systems, information and signal processing, extension of the range of voltmeter and ammeter.

Elements of a generalized measurement system- primary sensing element, variable conversion element, data presentation element, input-output configurations of measuring instruments and measurement systems- desired inputs, inferring inputs, modifying inputs, methods of correction for interfering and modifying inputs.

12 Hours

Characteristics of instruments and measurement systems: Measurement system performance, static calibration, static characteristics, errors in measurements, true value, static error, static correction, scale range and scale span, error calibration curve, reproducibility and drift repeatability, noise -signal to noise ratio, source of noise, Johnson noise, power spectrum density, noise factor and noise figure, accuracy and precision, indications of precision, significant figures, range of doubt, possible errors and doubtful figures, static sensitivity, linearity, hysteresis, threshold, dead time, dead zone, resolution of discrimination, loading effects, input and output impedances- input impedances, input admittance, output impedance, output admittance, loading effect due to shunt connected instruments, loading effects due to series connected instruments, generalized impedance and stiffness concepts, static stiffness and static compliance, impedance matching and maximum power transfer.

Potentiometer: Introduction to basic principle, Laboratory type Crompton's potentiometer, Dual range potentiometer, Volt ratio box, application of dc potentiometer, self-balancing potentiometer.

13 Hours

Measurement of Resistances: Classification of resistances, measurement of medium resistance, Measurement of low resistance (Kelvin double bridge, Ammeter-Voltmeter) and Measurement of high resistance including loss of charge method and Mega ohm bridge method.

AC Bridges: General theory of ac bridge, Measurement of self-inductance, Measurement of capacitance, Measurement of mutual inductance, Measurement of frequency, Sources of error in ac bridges and their minimization.

12 Hours

Electromechanical Indicating Instruments: Operating forces, Constructional Details, Control System, Torque Weight ratio, Damping System: Air friction Damping, Fluid Friction Damping, Eddy Current Damping, Electromagnetic Damping.

Analog Ammeter, Voltmeter: Introduction, Types of instruments, PMMC-Construction Torque Equation, MI Instruments- Construction, general Torque Equation, Classification of MI Instruments, Attraction Type, repulsion Type, Extension of range, Advantages & Disadvantages, Applications, Electrodynamometer Type instruments Induction type Energy meter.

13 Hours

- 1. Murty D.V. S. Transducers & Instrumentation PHI, New Delhi, 2000.
- 2. Sawhney A. K. Electrical and Electronics Measurements and Instrumentation Dhanpat Rai and Sons, New Delhi, 2000.
- 3. Kalsi H S Electronic Instrumentation Tata McGraw Hill, New Delhi, 4th Edition 2001.
- 4. Patranabis D. Sensors and Transducers PHI, New Delhi, 2003.
- 5. Doebelin Ernest O Measurement Systems: Application and Design Tata McGraw Hill Ltd, New Delhi, 2004.

Cours	e Title	9 :			ical Ma		s-I (DC	Machi	ines ar	nd		L	Т	Р	Cr
Cours	e Cod	le:		ELE20)2A							4	0	0	4
Cours	e Obj	ective	:	basic	conc	epts	related	Ele	ctrome	chanica	tudents al Ene heir app	ergy	Con		
Cours		come pletion		CO1		rstand m, Sin	ling F	Princip d doub			ctrome stem	chanio	cal	ene	ergy
course should	, the	e stu	ıdents	CO2		rstand (ction a	nd wor	king pr	rinciple	of sing	gle pl	nase	and
				CO3	of w		conn				ransforr peration				
				CO4			struction of i				ciple of on.	DC g	ener	ator	and
		Describe the construction, working principle and char DC motor.										d char	acter	ristic	s of
COs		C	01		CO2		C	D 3		CO4		C) 5		
RBTL	No.	L	.1, L2		L2, L4	1	L2	<u> </u>		L3		L3	}		
	CO	PO M	apping:	(Strong	g(3) / M	edium((2) / We	ak(1) ii	ndicate	s stren	gth of co	orrelati	on):		
			Р	rogram	Outcon	nes (P0	Os)/Pro	gram S	Special	Outcon	ne (PSC)'s)			
COs	PO	PO	PO	PO	РО	РО	РО	РО	РО	РО	РО	РО	PS	<u>. </u>	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01		02
CO1	3	2	1	1	1	-	-	1	2	1	-	3	3		1
CO2	3	3	-	2	-	1	-	-	2	-	-	-	3		1
CO3	3	1	2	3	1	-	1	-	2	1	1	3	3		1
CO4	3	-	2	-	-	1	-	1	2	1	-	2	3		1
CO5	2	2	3	1	1	1	_	-	2	1	-	2	2		1
Unit A	cal exp For	Electromechanical Energy Conversion: Principle of electromechanical energy conversion, calculation of electrical energy input, energy stored in magnetic field, mechanical work done, expression for force and torque for singly excited and doubly excited magnetic system. Force as a partial derivative of stored energy with respect to position of a moving element; torque as a partial derivative of stored energy with respect to angular position of a rotating													

element

 $\mathbf{\omega}$

Single Phase Transformers: Principle of single-phase transformer, E.M.F. Equation, turn ratio, phasor diagram of ideal and real transformer at no load and loaded condition, equivalent circuit, OC/SC test voltage regulation, losses and efficiency, all day efficiency and its calculation. Parallel operation of single-phase transformers, division of load between transformers in parallel (equal/unequal voltage ratio). Phase conversion - Scott connection, three-phase to six-phase conversion.

Three Phase Transformers: Three phase transformers; star/star connection, delta/delta connection, star/delta connection, delta/star connection 0° and +30° connection .choice of star delta connection, open delta connection, three winding transformer.

12 Hours

D.C. Generators: Constructional detail, voltage equation, lap and wave wound machines, equalizer, connection, armature reaction and method of overcoming its detrimental effects, equivalent circuit of DC generator, separately excited, and self-excite generator, voltage equation and terminal characteristics of shunt, series, and compound DC generator, voltage build up in shunt generator, failure to build up voltage in shunt generator, voltage regulation parallel operation of DC generator

13 Hours

D.C. Motors: Torque generated in particle D.C. motor, equivalent circuit of motor, and various types, terminal characteristics of shunt, series and compound motors. control of dc motor by shunt field method and armature voltage method. Ward Leonard speed control method, static ward Leonard method and multi quadrant speed control through ward Leonard method. Need of starter in dc motor, three-point and four starter of dc shunt motors, Testing of DC machines-Swinburne's test and Hopkinson test.

12 Hours

- 1. Bimbhra P.S. Electrical Machines Khanna Publisher.
- 2. Fitzgerald A.E., Kingsley C. and Umans S.D. Electric Machinery 6th Edition, McGraw Hill
- 3. Langsdorff E.H. Principles of A.C. Machines Tata McGraw Hill
- 4. Nagrath I.J. and Kothari D.P. Electrical Machine 4th Edition, Tata McGraw Hill,
- 5. Say M G Alternating Current Machine 5th edition, Sir Isaac pitman& Sons Ltd.

Course Title:	DC Ma	chines and Transformer Laboratory	L	т	Р	Cr			
Course Code:	ELE20	3A	0	0	2	1			
Course Outcome:	The state of the s								
After completion of course, the students	CO2	Working of different types of DC Motors							
should be able to	СОЗ	Working of Series/Shunt/Compound DC Generato	rs						
	CO4 Various characteristics of DC machines								
	CO5	Speed -torque characteristics of DC Machines							

The purpose of this course is to introduce to the students the basics of single phase and three phase Transformer, DC series, shunt and Compound motor/generator and to analyze their characteristics

- 1. To perform Load test on a single-phase transformer.
- 2. To perform Open circuit and short circuit tests on a single-phase transformer.
- 3. To find the efficiency and voltage regulation of single-phase transformer under different loading conditions.
- 4. To perform parallel operation of two single-phase transformers.
- 5. To study the various connections of three-phase transformer.
- 6. To study the constructional details of direct current (DC) machine and to draw sketches of different components.
- 7. To measure armature and field resistance of direct current (DC) shunt generator and to obtain its open circuit characteristics.
- 8. To obtain load characteristics of direct current (DC) shunt generator.
- 9. To obtain load characteristics of direct current (DC) series generator.
- 10. To obtain load characteristics of direct current (DC) compound generator.
- 11. To draw speed-torque characteristics of direct current (DC) shunt/series/compound generator.
- 12. To study two/three/four point starters for DC machine.
- To perform Swinburne's test (no load test) to determine losses of direct current (DC) shunt motor.

Course Title:			Electr Labor			remen	nt & I	nstru	menta	tion		L	T	Р	Cr
Course Code:			ELE21	0								0	0	2	1
Course Outcome	e:		CO1	Vario	ous typ	oes of	electr	omecl	hanica	l meas	suring	inst	rum	ents	S.
After completion course, the stu	udent		CO2	Calib	rate a	nd use	the I	Digital	Energ	gy Me	ter.				
should be able to)		CO3	Meas	uring F	R,L,C.l	Jsing I	Bridge	S						
			CO4	Meas	sureme	ent of	freque	ency u	ising V	Vien's	Brid	ge.			
			CO5	Usage of DSO for steady-state periodic waveforms produced by a function generator,											
RBTL No. Mapp L1(Rememberin		g: , L2(Understanding), L3(Applying), L4(Analysing), L5(Evaluating), L6(Creating)													
COs		CO1 CO2 CO3 CO4 CO5													
RBTL No.			L1		L2			3		L2			L2		
CO/PO	Марр	oin	ng: (Stror	ng(3) /	Mediu	m(2) /	Weak	(1) indi	cates	strengt	h of co	rrela	ation):	
COs			Prog	ram O	utcom	es (PC	s)/Pro	gram \$	Specia	l Outco	ome (P	'SO's	s)		
	P F)	PO3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PC 12		PS 01	PS O2
		2	2	-	-	1	-	-	1	1	1	3		3	1
CO2 3	3 -		2											1	
CO3 3	3 3		-	3	3	1	-	-	3	2	1	-		3	2
CO4 3			3	2	-	1	-	-	2	2	-	3		3	1
CO5 3	3 2	,	3												

List of Experiments:

- 1. Study of principle of operation of various types of electromechanical measuring instruments.
- 2. Determination of frequency, Amplitude, RMS Value, Average Value and phase angle using Cathode Ray Oscilloscope.
- 3. To calibrate and use the Digital Energy Meter.
- 4. Measurement of resistance using Wheatstone bridge.
- 5. Measurement of resistance using Kelvin's Bridge.
- 6. Measurement of self-inductance using Anderson's Bridge.
- 7. Measurement of capacitance using Schering Bridge.
- 8. Measurement of capacitance using Desauty's Bridge.
- 9. Measurement of frequency using Wien's Bridge.
- 10. To measure the unknown resistance with the help of Voltmeter and Ammeter.
- 11. Usage of DSO for steady-state periodic waveforms produced by a function generator, Selection of trigger source and trigger level, selection of time-scale and voltage scale, Bandwidth of measurement and sampling rate.

Course Title:	Power	System-I (Transmission and Distribution)	L	т	Р	Cr						
Course Code:	ELE21	7	3	0	0	3						
Course Objective:	develo	ourse provides a comprehensive understanding opment of power system and basics of transruction and economic design.			_							
Course Outcome:	CO1	Introduction to supply system and economy la	w									
After completion of course, the students	CO2	Conductors and Transmission Line Construction										
should be able to	СОЗ	Skin and proximity effect demonstration.										
	CO4	Transmission Line Parameters:										
	CO5	Transmission Line performance										
Learning Outcomes:		ne completion of this course the participants would rhead and underground transmission line.	be a	ble t	o ba	sics						

Introduction: Power supply network, effect of voltage in conductor size, comparison of conductor volume in typical systems elementary high voltage DC transmission and its advantages and disadvantages. Structure of a power system: Bulk Power Grids and Microgrids.

Supply System: Introduction to Transmission and Distribution systems, Comparison between DC and AC systems for Transmission and Distribution, comparison of cost of conductors, choice of working voltage for transmission and distribution, economic size of conductors-Kelvin's law, Radial and mesh distribution networks, Voltage regulation.

10 Hours

$\mathbf{\omega}$

Conductors and Transmission Line Construction: Conductor materials; solid, stranded, ACSR, hollow and bundle conductors. Different types of supporting structures for overhead lines. Elementary ideas about transmission line construction and erection. Stringing of conductors, spacing, sag and clearance from ground, overhead line insulators, Concept of string efficiency. Phenomenon of corona, electric stress, corona discharge.

Transmission Line Parameters: Introduction to line parameters, Resistance of transmission line, inductance of single-phasetwo-wire line, concept of G.M.D., Inductance of three-phase line, Use of bundled conductor, transposition of power lines, capacitance of 1phase and 3-phase lines, effect of earth on capacitance of conductors. Double circuit lines, Skin and Proximity effect.

10 Hours

Performance of transmission lines: Representation of short transmission line, medium length line (nominal T & II circuits), long length line by hyperbolic equations and equivalent T & II circuits. Power flow through transmission lines, ABCD constants, Voltage regulation.

Underground Cables: Classification of cables based upon voltage and dielectric material, insulation resistance and capacitance of single core cable, dielectric stress, Capacitance of 3 core cables, methods of laying, heating effect, Maximum current carrying capacity, cause of failure, comparison with overhead transmission lines.

10 Hours

- 1. Elgerd O.L. Electrical Energy System Theory An introduction Tata McGraw-Hill Publication
- 2. Gupta B.R. Power System Analysis & Design Wheeler Publishing.
- 3. Nagrath I.J. and Kothari D.P. Power System Analysis Tata McGraw-Hill Publication
- 4. Stevenson Jr. W.D. Elements of Power System Analysis Tata McGraw-Hill Publication
- 5. Wadhwa C.L Course in Electrical Power New Age International Pvt. Ltd.

Course	Title:			Elec	Electromagnetic Field Theory L T P Cr ELE204 3 0 0 3											
Course	Code:			ELE	204								3	0	0	3
Course	Objec	tive:		Mag equ stud	neto ation lents ensic	statics s and to u	and their ndersta eal w	develo applicand the orld a	pment cations ne un and fi	of Max in trai iversal nd solu	understa xwell's ensmissic theoretic ution to	equation on lines cal con	n an . It icept	d El enak ts ir	M woles	the ree-
Course	Outco	me:		CO.	1	ınderst		ector a			gradient,	diverge	ence	and	law	s of
course,		stud	of lents	CO	2 8	analyse	stead	ly and	time v	arying n	nagnetic te equati					
should be	e able	to		co		nterpre dielectr			propag	gation in	homog	eneous,	cor	nduc	ting	and
				CO	1 C	differen				refracti ic and in	ion of nsulator.	EM wa	aves	by	per	fect
				CO		analyse Transmission line travelling & standing waves, characteristic impedance, reflection coefficient.										
RBTL N			_	Under	stanc	ding), L	.3(App	lying),	L4(Ana	alysing),	L5(Eva	luating),	L6(Crea	ıting))
COs				CO1			O2		CO3		CO4			CO5		
RBTL N	No.			L1, L	2	L	1, L2		L3,L	.5	L2]	L2, I	.4	
(CO/PC) Maj	pping	g: (Stro	ong(3) / Me	dium(2	2) / We	eak(1)	indicate	s strengt	h of cor	relat	ion)	•	
				Prog	ram (Outcon	nes (Po	Os)/Pro	ogram	Special	Outcom	e (PSO's	s)			
COs	P O 1	P O 2	P O 3	P O 4	P O 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	P.	SO1	P	PSO 2
CO1	3	2	-	-	1	-	-	1	1	3	1	3	1	1		1
CO2	3	2	_	1	2	-	-	-	-	3	-	3		1		1
CO3	3	3	2	3	-	2	1	-	2	3	-	3		2		3
CO4	3	3	2	3	1	3	1	-	2	3	1	3		2		3
CO5	3	2	1	2	2	3	2	-	2	3	1	3		3		3
Unit A	and	curl;	vecto	or rela	ations	s in c	ther o	coordin	ate s	ystems,	pretatior integra heorem,	l theore	ems:	div	erge	nce

$\mathbf{\omega}$

Electrostatics: Introduction to fundamental relations of electrostatic field: Gauss's law and its applications; potential function; Field due to continuous distribution of charges; Equipotential surfaces; Divergence theorem; Poisson's equation and Laplace's equation, capacitance, electrostatic energy, Conditions at Boundary between dielectrics, Uniqueness theorem.

Magnetostatics: Magnetic induction and Faraday's laws; magnetic Flux Density; magnetic field strength and magneto motive force; Ampere's work Law in the differential vector form; permeability; energy stored in a magnetic field; ampere's force law; magnetic vector potential, Analogies between electric and magnetic field

13 Hours

C

Maxwell's Equations and Time-Varying Fields: Equation of continuity for time-varying fields, Inconsistency of Ampere's law, Maxwell's equations in integral and differential form for static and time-varying fields, conditions at a Boundary surface, Concept of Poynting vector, Poynting Theorem, Interpretation of E x H

12 Hours

۵

Electromagnetic Waves Propagation: Solutions for free-space conditions; Uniform Plane Wave Propagation; Wave equations for a conducting medium; Sinusoidal time variations; Polarization; Conductors and Dielectrics; Direction Cosines; Reflection by Perfect Conductor-normal and oblique incidence, Perfect Dielectric-normal incidence, Perfect Insulator-Oblique incidence; Brewster angle, Reflection at a surface of Conductive medium, Surface impedance, wave impedance, velocities of propagation.

Transmission Lines: Circuit representation of parallel plane transmission lines. Parallel plane transmission line with losses. Low loss RF and UHF transmission lines. Distortion less condition. Transmission line charts-impedance matching, Introduction to waveguides. Introduction to computational electromagnetic.

Projects related to this course should be given to students(in groups) in order to promote team work and ethical values.

13 Hours

- Sadiku, Matthew NO. Elements of electromagnetics. Oxford university press, 2014.
- 2. Jordan, Edward C., and Keith G. Balmain. "Electromagnetic waves and radiating systems." (1968).
- 3. Kraus, John. Electromagnetics. McGraw-Hill, 1992.
- 4. Edminister, Joseph. Schaum's outline of theory and problems of electromagnetics. 1993.
- 5. Rao, NannapaneniNarayana. Elements of engineering electromagnetics. Prentice Hall, 1977.
- 6. Prasad, K. D., and Deepak Handa. Antenna and wave propagation. SatyaPrakashan, 2003.

Cours	e Title):			ical Ma chrono			ial Pur	pose N	lachin	e)	L	Т	Р	Cr
Cours	e Cod	e:		ELE21	18							3	0	0	3
Cours	e Obj	ective:					•	•	•		rotating ormance				
Cours	e Out	come:		CO1	Fund	ament	als of A	AC mad	chine v	vindin	gs				
After course		pletion stu	of dents	CO2	Polyp	hase I	nducti	on Mad	hines						
should	be ab	le to		CO3	Starti	ng Me	thods	and Sp	eed Co	ontrol	of induc	tion n	noto	r	
				CO4	Singl	e phas	e Indu	ction n	notor v	vorking	9				
				CO5	Speci	ial Pur	pose N	lotors:							
COs		С	O1		CO2		C	 ጋ3		CO4		С	D5		
RBTL I	No.		1, L2		L2, L4	1	L2			L3		L3			
	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):														
0			Р	rogram	Outcon	nes (PC	Os)/Pro	gram S	pecial	Outcor	ne (PSO)'s)			
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS 01		PS O2
CO1	3	2	1	1	1	-	-	1	2	1	-	3	3		1
CO2	3	3	-	2	-	1	-	-	2	-	-	-	3		1
CO3	3	1	2	3	1	-	1	-	2	1	1	3	3		1
CO4	3	-	2	-	-	1	-	1	2	1	-	2	3		1
CO5	2	2	3	1	1	1		<u>-</u>	2	1	-	2	2		1
Unit A	cyli coil win	ndrical s, cond ding ty	rotor; centratorpes, A	slots for ed wind ir-gap N	windin ing, dis 1MF dis	gs; sin tributed tributio	gle turr d windir on with	n coil - a ng, wind fixed cu	active p ding ax urrent th	ortion is, 3D nrough	of winding and over wisualization winding on factors	rhang; ition of - cond	full- the	oitch abov	ı ve
	12 Hours														
Unit B	Polyphase Induction Machines: Analogy between induction motor and transformer, production of rotating field in space distributed three-phase winding, constructional features, concept of slip and operation, rotor frequency, current and power, equivalent circuit, phasor diagram, torque-slip characteristics, effect of rotor circuit resistance, starting torque, crawling and cogging, cage motors(double cage and deep bar motor). Power flow diagram of practical induction motor, Determination of efficiency.														
													13	Hou	ırs

C

Starting Methods and Speed Control: commonly used starting methods speed control of induction motor (i) control of speed of rotating field, (ii) control of slip speed. Effect of voltage injection in rotor circuit of slip ring induction motor. Motor tests for estimation of equivalent circuit parameters.(No-load and Blocked rotor test.)

12 Hours

Single phase Motors: Principle of operations, Double Revolving field theory, Equivalent circuit of single phase induction motor based on two revolving field theory, operation of, Split phase, induction motor. Capacitors motors, shaded pole motor, universal motor.

Special Purpose Motors: Stepper Motors: construction, principle of operation and applications, Linear Induction Machines: construction, principle of operation and applications. Universal Motor: construction, principle of operation and applications.

13 Hours

- 1. Fitzgerald A.E., Kingsley C. and Umans S.D. Electric Machinery 6th Edition, McGraw Hill
- 2. Langsdorff E.H. Principles of A.C. Machines McGraw Hill
- 3. Nagrath I.J. and Kothari D.P. Electrical Machines 4th Edition, Tata McGraw Hill,
- 4. Bimbhra P.S. Electrical Machinery Khanna Publishers
- 5. Say M G Alternating Current Machines 5th edition, Sir Isaac pitman& Sons Ltd.

Course Title:	Renew	able Energy Sources and Management	L	Т	Р	Cr				
Course Code:	ELE21	4B	3	0	0	3				
Course Objective:		ourse provides a comprehensive understanding reas, their processing and analyses.	enew	able	ene	ergy				
Course Outcome: After completion of	CO1	acquire the knowledge of Global energy requirement and acquire an in depth knowledge about the energy conservation and Energy management.								
course, the students should be able to	CO2									
	СОЗ	acquire the knowledge of PV Cells and solar power	er ut	iliza	tion.					
	CO4	gain the knowledge of electric power generation fr	om v	wind	pov	ver.				
	CO5	Understanding Fuel cells, principle of action, gene fuel cells and know the harnessing power from renewable sources								

RBTL No. Mapping:

L1(Remembering), L2(Understanding), L3(Applying), L4(Analysing), L5(Evaluating), L6(Creating)

COs	CO1	CO2	CO3	CO4	CO5
RBTL No.	L1, L2	L1, L2	L2	L1, L2	L2

CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):

COs			Pr	ogram	Outcon	nes (PC	Os)/Pro	gram S	Special	Outcon	ne (PS	O's)		
COS	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2
CO1	3	-	1	-	1	2	1	-	2	1	-	2	2	1
CO2	3	3	3	1	2	3	-	2	2	-	3	2	3	3
CO3	2	3	3	-	2	3	3	-	3	1	-	2	3	3
CO4	3	3	3	1	2	3	3	1	2	-	3	2	3	3
CO5	2	2	-	-	1	2	3	2	3	1	3	2	3	1

Introduction: Global energy requirement, Limitations of Conventional Energy sources, uses & growth of alternate energy sources, Basic schemes & application of direct energy conversion, Applications of carbon credit, Kyoto Protocol and oil crisis.

Energy Management: Principles of energy conservation and management: waste heat utilisation, heat pumps, industrial and commercial applications of heat pump. Energy Audit, energy conservation approach/technologies, co-generation, waste heat utilization, power factor improvement, regeneration methods, energy storage, efficient energy management, techniques, Energy management system in India.

 $\mathbf{\omega}$

MHD Generators: Basic principle, gaseous conduction & Hall Effect, generator & motor effect, different types of MHD generators, practical MHD generators, applications & economic aspects.

Thermo-Electric Generators: Thermoelectric effects, Thermo electric converters, figure of merit, properties of thermoelectric materials, brief description of construction of thermoelectric generators, applications & economic aspects.

12 Hours

C

Photo Voltaic Effect & Solar Energy: Photo Voltaic effect, different types of photoelectric cells, cell fabrication, characteristics of photovoltaic cells, conversion efficiency, solar batteries, solar radiation analysis, solar energy in India, solar collector, solar furnaces & applications.

12 Hours

Alternate Sources: Fuel cells, principle of action, general description of fuel cells, conversion efficiency, operational characteristics & applications. Low-level hydro plants, definition of low head hydropower, Choice of site, choice of turbines. Wind power, history of wind power, wind machines, theory of wind power, characteristics of suitable wind power sites, Biomass energy, conversion processes. Different biomass energy resources, electric equipment, precautions, and applications.

14 Hours

- 1. Chakrabarti, A. Energy Engineering and Management PHI, 2013
- 2. Kashkari, Chaman, Energy: Resources, Demand, and Conservation, with Special Reference to India. New Delhi: Tata McGraw Hill Publishing Company, 1975.
- 3. R.A. Coormbe An Introduction to Direct Energy Conservation.
- 4. Kettani, M Direct Energy Conversion.
- 5. Loftness, Robert L. "Energy handbook." (1984).
- 6. Considine, Douglas M. "Energy technology handbook." (1977).
- 7. Rai, G. D. "Non-conventional energy resources." Khpu Khanna, India 369 (2004): 331-337.
- 8. Rao, S., and B. B. Parulekar. "Energy Technology: Non-conventional, renewable and conventional." Khanna Publication, 3rd (2012).
- 9. Ter-Gazarian, Andrei G. Energy storage for power systems. No. 6. let, 1994.

Cours	e Title	:		Electr	ical Es	timatio	n and	Costin	g Labo	ratory	,	L	Т	Р	Cr
Cours	e Cod	e:		ELE47	'0A							0	0	6	3
Course After course	comp , the	pletic	on of tudents	CO1	wiring						em and ig estin				
should	be ab	ole to		CO2	desig install	n prod ationar n prod	edure, nd des	wiring cribe	ງ desiឲ the ba	gn for sic ter	erm, ge domes rm, ger domes	stic a neral	nd i rules	ndus s, ci	strial rcuit
				СОЗ	and i	industri	al elec	ctrical	installa [.]	tion as	of dor s per l allation	IE Ru	les a	and	test
				CO4	service estimate	e conr ation a	nection	installating of	ation of	servic	or sing e conn underg	ection	and	prep	oare
				CO5	Prepare estimate and costing of repair and maintenance of electrical equipment and products										
RBTL I			_	nderstan	ding), L	.3(Appl	ying), L	.4(Anal	ysing),	L5(Eva	aluating), L6(C	Creati	ng)	
COs			CO1		CO2			D3		CO4			O5		
RBTL	No.		L1, L2		L1, L	2	L2			L2		L			
					<u> </u>										
	CO/	PO I	Mapping	: (Stron	g(3) / M	edium(2) / We	ak(1) ir	ndicate	s stren	gth of c	orrela	tion):		
			F	Program	Outcon	nes (PC	Ds)/Pro	gram S	pecial	Outcon	ne (PSC	D's)			
COs	PO 1	PC 2		PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS		PS O2
CO1	2	-	-	3	2	2	-	1	1	2	-	2	2		2
CO2	2	-	3	3	-	2	-	3	-	2	2	2	3		3
CO3	3	3	3	3	2	2	2	2	-	2	2	3	3		3
CO4	2	3		2	2	1	1	3	2	-	3	2	3		3
CO5	05 2 - 2 - 2 3 - 2 2 3 2 1 3										3				

- 1. To study Indian electricity rules.
- 2. To carryout wiring diagram of residential building, Educational Institute and Industry. Giving selection of appropriate wiring, list materials and accessories for given project.
- 3. To study the design consideration of Panel Boards.
- 4. To study the design consideration of various electrical systems:
 - a. 3 phase four wire distribution systems
 - b. Earthing.
- 5. To estimate the cost of a domestic installation (Residential building, laboratory room or Drawing hall etc.) with concept of illumination design. TERI (The Energy Research Institute) recommendations on lighting schemes
- 6. To estimate the cost of industrial installation (Workshop, agriculture, flour mill etc.).
- 7. To estimate the cost of overhead service connection (Single phase and three phase).
- 8. To estimate the cost of underground service connection (single phase and three phase).
- 9. To estimate the cost of overhead, 440 V, 3-phase, 4 wire or 3 wire distribution line.
- 10. To estimate the cost of underground distribution line.
- 11. To estimate the cost of any one electrical appliance.
- 12. To estimate the cost of repairs and maintenance of domestic appliance such as heater, electric iron, fans, washing machine, geyser, AC etc.
- 13. To design & fabricate single phase transformer
- 14. To study various types of light sources and lighting schemes.
- 15. To make wiring diagrams of motor control circuits for starting of
 - a. 3 phase induction motor
 - b. Synchronous motor

Course Title:	Signa	al and Systems	L	Т	Р	Cr				
Course Code:	ELE3	30	3	0	0	3				
Course Outcome:	CO1	interpret signals, convolution and learn various pro	pert	es.						
After completion of course, the students	CO2	to familiarize the concepts of transform based continuous time and discrete time analysis of signals and systems.								
should be able to	СОЗ	be conversant in Fourier Series, Fourier Transform basic properties	n alo	ng v	ith t	heir				
	CO4	analyse sampling, restructuring, sampling theorem processing.	n, ali	asin	g, sig	gnal				
	CO5	study Laplace and Z-transform, their basic prop convergence, inverse Laplace and Z-transform, functions.								

RBTL No. Mapping:

L1(Remembering), L2(Understanding), L3(Applying), L4(Analysing), L5(Evaluating), L6(Creating)

COs	CO1	CO2	CO3	CO4	CO5
RBTL No.	L1, L2	L2	L3, L4	L4, L5	L3, L4

CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):

		1	<i>υ</i> ,	υ.		,	,	\ /						
			Pro	ogram (Outcon	nes (PC	s)/Prog	gram S _l	pecial (Outcom	ne (PSC	O's)		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PS	PS
	101	102	103	104	103	100	107	100	10)	0	1	2	O1	O2
CO1	3	2	1	1	1	1	-	-	1	3	1	2	1	2
CO2	3	3	2	1	1	-	-	-	1	2	1	2	2	2
CO3	3	3	3	2	2	1	-	-	-	2	1	-	3	3
CO4	3	3	3	2	3	3	1	1	3	2	3	2	3	3
CO5	3	2	2	1	1	2	-	-	1	2	3	-	2	2

Classification of Signals And Systems: Classification of Signals: Continuous time signals, Discrete-time signals, Periodic and Aperiodic signals, Even and odd signals, Energy and power signals ,Deterministic and random signals ,Complex exponential and Sinusoidal signals .Unit step, Unit ramp, Unit impulse ,Representation of signals in terms of unit impulse .Classification of Systems: Continuous time systems, Discrete-time systems, Linear system, Time Invariant system, causal system, BIBO system , Systems with and without memory ,LTI system.

Analysis of Continuous-Time Signals: Fourier series: Representation of Continuous time Periodic signals, Trigonometric and exponential, Symmetry conditions, Properties of Continuous-time Fourier series, Parseval's relation for power signals, Frequency spectrum. Fourier transform: Representation of Continuous-time signals, Properties of Continuoustime Fourier transform, Parseval's relation for energy signals, Frequency spectrum, Analysis of LTI system using Fourier methods.

LTI Continuous Time System: System modelling: Solution of Differential equation with initial conditions, Zero state response and Zero input response, impulse response ,Frequency response, Convolution, Analysis and characterization of LTI system using Laplace transform.

10 Hours

C

Analysis Of Discrete-Time Signals And Systems: Representation of sequences, Discrete-Time Fourier Transform (DTFT), Discrete Fourier Transform (DFT) and its properties, Solution of linear constant coefficient difference equations with initial conditions, Zero state response and Zero input response- impulse response, Convolution sum, Frequency response.

15 Hours

LTI DT System Characterization and Realization:

Unilateral and Bilateral Z transforms and its properties, Inverse Z transform: Power series expansion and Partial fraction methods. Analysis and characterization of DT system using Z transform, Realization of structures for DT systems, Direct form-I, Direct form II, Parallel, Cascade forms

Sampling and Reconstruction

The Sampling Theorem and its implications. Spectra of sampled signals. Reconstruction: ideal interpolator, zero-order hold, first-order hold. Aliasing and its effects. Relation between continuous and discrete time systems. Introduction to the applications of signal and system theory: modulation for communication, filtering, feedback control systems.

15 Hours

- 1. Oppenheim Allan V., Wilsky S. and Nawab S.H., "Signals and Systems", Pearson Education.
- 2. RawatTarun Kumar, "Signal and Systems", First edition 2010, Oxford Press
- 3. Edward W. Kamen& Heck Bonnie's, "Fundamentals of Signals and Systems", Pearson
- 4. Haykins Simon, "Communication Signals & System", John Wiley & Sons.
- 5. Hsu H. P., RanjanRakesh, Schaum's Outlines, "Signals and Systems", Tata McGraw Hill.
- 6. Salivahanan S., Vallavaraj A., Gnanapriya C., "Digital Signal Processing", McGraw Hill International.

Course Title:				Transducer and Signal Conditioning								L	Т	Р	Cr
Course Code:				ELE318A								3	0	0	3
Course Outcome: After completion of				CO1	exposed to various sensors and transducers for measuring physical quantities									ring	
course, the students should be able to			CO2	familiar with the specifications of transducers and their application.								ion.			
				CO3	exposed to advancements in sensor technology and able to identify or use a transducer for a specific measurement application.										
			CO4	understand signal conditioning circuits and basic telemetry											
			CO5	identify or use CRO for specific measurement application.											
RBTL	No. M	apping	:												
L1(Rer	memb	ering),	L2(Un	derstan	ding), L	3(Appl	ying), l	_4(Anal	ysing),	L5(Eva	ıluating),	L6(C	reati	ng)	
COs	COs CO1		01		CO2			CO3 CO4				CO5			
RBTL No. L2, L4		2, L4		L2,L4		L	L5, L6		L6	L6		L5			
		•			•		•					•			
	CO/	PO Ma	apping:	(Strong	g(3) / M	edium((2) / We	eak(1) ii	ndicate	s stren	gth of co	rrelati	ion):		
Program Outcomes (POs)/Program Special Outcome (PSO's)															
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O		PS O2
CO1	3	-	2	-	-	2	-	-	1	2	2	-	-		3
CO2	3	3	2	-	3	2	1	-	1	-	2	2	1		3
CO3	3	1	3	3	3	-	1	1	-	2	3	2	1		3
CO4	3	3	3	3	3	2	-	-	1	2	3	-	1		2
CO5	3	-	2	-	-	2	-	-	1	-	2	-	-		2

Introduction: Measurement systems, Basic electronic measuring system, advantage of electric transducers Transduction principles, Classification of transducers, General transducers characteristics, Criteria for transducer selection, characteristics of transducers: input characteristics, transfer characteristics, output characteristics

Resistive Transducers: Principles of operation, construction, theory, advantages and disadvantages, applications of Potentiometers, strain gauges, (metallic and semiconductor type), Resistance Thermometer, Thermistor.

Inductive Transducers: Types of Inductive transducer, Principles of operation, construction. Advantages & disadvantages and applications. Various variable Inductive Transducers: LVDT Linear variable differential transformer (LVDT), advantages & disadvantages of LVDT. Uses of LVDT, Rotary Variable Differential Transformer (RVDT), applications

Capacitive Transducers: Types of capacitive transducer, Principles of operation, construction, theory, advantages and disadvantages and applications, of capacitive transducers based upon familiar equation of capacitance

Elastic Transducers: Spring bellows, diaphragm, bourdon tube - their special features and application

14 Hours

മ

Active Transducers: Principle of operation, construction, theory, advantages and disadvantages and applications of following transducers: Thermocouple, Piezo-electric transducer, Magnetostrictive transducer, Hall effect transducer, Photo-voltaic transducer and electrochemical transducer.

Other Transducers: Optical transducers: photo-emissive, photo-conductive and Photovoltaic cells, Digital

Opto-Electronic Transducers:photoconductive cells, semiconductor photodiode, Phototransistors, Optical encoder, Shaft encoder. Feedback fundamentals, introduction to Inverse transducer.

12 Hours

Measurement Using Transducers: Motion, Force and Torque measurement, fundamental standards, standard, relative displacement, transnational and rotational relative; velocity transducers: rotational relative, transnational and rotational relative; measurements: seismic and absolute display, Accelerometers: Standards and Calibration, Basic methods of force measurement, Characteristics of elastic force transducer, Torque Measurement of rotating Shafts, dynamometers, Pressure measurement: standards and Calibration, Basic Methods of Pressure measurement, Thermocouple Vacuum Gauge, Pirani Gauge, Ionization Type, Vacuum Gauges, Elastic Transducers, High Pressure Measurement, Low Pressure (Vacuum) measurement, Flow measurement Local flow velocity, Magnitude and direction Gross volume flow rate, Gross Mass flow rate, Turbine Meters Effect.

12 Hours

Signal Conditioning: Concept of signal conditioning, Op-amp circuits used in instrumentation, Instrumentation amplifiers, analog-digital sampling, introduction to A/D and D/A conversion, signal filtering, averaging, correlation, Interference, grounding, and shielding. Basic telemetry system.

Oscilloscopes: Introduction, Basic principles, CRT features, Block diagram and working of each block, Typical CRT connections, study of various stages in brief, high-frequency CRO considerations, measurement of phase &frequency, electrostatic deflection, dual trace & dual beam oscilloscope, Sampling and storage oscilloscope, Introduction to DSO.

12 Hours

- 1. Murty D V S, "Transducers & Instrumentation", PHI, New Delhi, 2000.
- 2. Sawhney A K, "Electrical and Electronics Measurements and Instrumentation", DhanpatRai and Sons, New Delhi, 2000.
- 3. Kalsi H S, "Electronic Instrumentation", Tata McGraw Hill, New Delhi, 4th Ed., 2001.
- 4. Patranabis D, "Sensors and Transducers", PHI, New Delhi, 2003.
- 5. Doebelin Ernest O, "Measurement Systems: Application and Design", Tata McGraw Hill Ltd., New Delhi, 2004.

Course Title: Course Code:		Digita	al Electronics	L	Т	Р	Cr			
		ELE3	3	0	0	3				
Course Outcome: After completion of course, the students should be able to		CO1	Understand concepts of combinational and sequential circuits							
		CO2	Analyze the synchronous and asynchronous logic circuits.							
		CO3	Understand concepts of memory, programmable logic and digital integrated circuits.							
		CO4	Design Combinational and sequential systems.							
		CO5	RTL, DCTL, DTL, TTL, ECL, CMOS and its various types							
Unit A	Number System and Binary Code: Introduction, Binary, Octal, Hexadecimal & some nonstandard Number: Conversions, Addition, Subtractions, Multiplication, Division, Weighted- Non weighted codes, Signed - unsigned numbers, Binary Subtractions using 1's and 2's compliment, ASCII code, Excess 3 code, Grey code, BCD code and BCD additions & BCD Subtractions.									
Unit B	Minimization of logic function: Review of gates: - OR, AND, NOT, NOR, NAND, EX-OR, EXNOR, Universal gates, Basic theorem of Boolean algebra, Sum of Products and Product of Sums, canonical form, Minimization using: - Boolean algebra, K-map and Q-M method.									
	0	0::	Later Latin Condition and the Market English			Ηοι				
Unit C	Combinational Circuits : Introduction, Combinational circuit design, Encoders, decoders, Adders, Sub tractors and Code converters, Parity checker, seven segment display, Magnitude comparators. Multiplexers, De-multiplexer, Implementation of Combinational circuit using MUX & De-MUX.									
	Sequential Circuits: Introduction, flip flops, Clocked flip-flops, SR, JK, D, T and edge-triggered flip-flops, Conversions of Flip flops, Shift Registers, Type of Shift Registers, Ring Counter, Twisted Ring Counter, Counters, Counter types, counter design with state equation and state diagrams.									
					10	Ηοι	ırs			
Unit D	D/A and A/D Converters: Introduction, Weighted register D/A converter, binary ladder D/A converter, steady-state accuracy test, monotonicity test, D/A accuracy and resolution, A/D converter:- Simultaneous, Counter type, Continuous, Successive approximation, Single and dual slope A/D converter, A/D accuracy and resolution. Semiconductor Memories Introduction, Memory organization, Classification and characteristics of memories, Sequential memories, ROMs, R/W memories, Content addressable memories, PLA and PAL.									
	Logic Families: RTL, DCTL, DTL, TTL, ECL, CMOS and its various types, Comparison of logic families.									
					10	Hou	rs			
Sugges	ted Books:									

- 1. Morris Mano, "Digital Design", Prentice Hall of India Pvt. Ltd
- 2. Donald P.Leach&Albert Paul Malvino, "Digital Principles and Applications", 5 ed., TataMcGraw Hill Publishing Company Limited, New Delhi, 2003.
- 3. Jain R.P., "Modern Digital Electronics", 3ed., Tata McGraw-Hill publishing Company limited, New Delhi, 2003.
- 4. Thomas L. Floyd, "Digital Fundamentals", Pearson Education, Inc, New Delhi, 2003
- 5. Ronald J. Tocci, Neal S. Widmer, Gregory L. Moss, "Digital System -Principles and Applications", Pearson Education.

is:
ij
ē
₽
ē
o X
Ш
5

Course Title:	Digita	l Electronics Laboratory	L	Т	Р	Cr					
Course Code:	ELE3	31	0	0	2	1					
Course Outcome:	CO1	Verification of the truth tables of TTL gates									
After completion of course, the students	Verify the NAND and NOR gates as universal logic	gat	es.								
should be able to	СОЗ	Half adder/ Full adder realization									
	CO4	Multiplexer/ DE multiplexer Realization									
	CO5	CO5 Introduction to flip-flops									

To understand the practicability of Digital Electronics Laboratory, the list of experiments to be performed in the laboratory is given below

- 1. Verification of the truth tables of TTL gates, e.g., 7400, 7402, 7404, 7408, 7432, 7486.
- 2. Verify the NAND and NOR gates as universal logic gates.
- 3. Verification of the truth table of the Multiplexer 74150.
- 4. Verification of the truth table of the De-Multiplexer 74154.
- 5. Design and verification of the truth tables of Half and Full adder circuits.
- 6. Design and verification of the truth tables of Half and Full subtractor circuits.
- 7. Design and test of an S-R flip-flop using NOR/NAND gates. a) Verify the truth table of a J-K flip-flop (7476) b) Verify the truth table of a D flip-flop (7474)
- 8. Operate the counters 7490, 7493 and 74194. Verify the frequency division at each stage and with a low-frequency clock (say 1 Hz) display the count on LEDs.
- 9. Verify the truth table of decoder driver 7447/7448. Hence operate a 7 segment LED display through a counter using a low-frequency clock.
- 10. Repeat the above with the BCD to Decimal decoder 7442 and an array of LEDs
- 11. Design and test D/A converter using R-2R Ladder Network 12. Study and test of A/D converter.

Course Title:		Power	r Electronics			L	Т	Р	Cr				
Course Code:		ELE3	06A			3	1	0	4				
	ion of students	CO1		dge about funda er electronics	•								
should be able t	0	CO2		on and Turn off nt protection tec		ous	over	volt	age				
		CO3	Analyse and design of various single phase and three phase AC-DC converters, AC-AC converters power converter circuits and understand their applications										
		CO4	•	analysis and design of inverters which consist of half and full bridge, single and three phase etc.									
	ost Chopper circu	uit, (Class	ifica	tion								
COs	CO1		CO2	CO3 CO4		CC)5						
RBTL No.	L1, L2		L2, L4	L2	L3								

000		Program Outcomes (POs)/Program Special Outcome (PSO's)														
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2		
CO1	1	3	1	1	1	-	-	1	2	1	-	2	3	1		
CO2	2	3	-	2	-	1	-	-	2	-	-	-	-	1		
CO3	3	2	2	3	1	-	1	-	1	1	1	3	3	1		
CO4	2	2	1	-	_	1	-	1	2	1	-	2	3	1		
CO5	2	•	-	1	1	1	•	-	2	1	•	1	2	1		

Thyristors and their characteristics: Introduction to Thyristor family, V-I characteristics of silicon-controlled rectifier (SCR), gate turn-off thyristor (GTO), Bidirectional diode for alternating current (DIAC) and Bidirectional, Triode for Alternating Current (TRIAC). Principle of operation of silicon-controlled rectifier (SCR). Two transistor analogy. Turn on methods of a thyristor Switching characteristics of thyristors during tum-on and turn-off. Gate characteristics. Firing of thyristors. Gate triggering circuits. Series and parallel operation of silicon-controlled rectifiers (SCR) and their triggering circuits. Thyristor specifications; such as latching current and holding current, critical rate of rise of off-state voltage (dv/dt) and critical rate of rise of on-state current (di/dt) etc. Protection of SCR from over voltage and overcurrent. Snubber circuits. Power dissipation.

Thyristor commutation techniques: Self-commutation by resonating the load (Class A), Self-commutation by LC circuit (class B), Complementary commutation (class C), Auxiliary commutation (class D), External pulse commutation (class E), AC Line commutation (class F).

$\mathbf{\omega}$

Phase controlled techniques: Introduction to phase angle control. Single phase half wave controlled rectifiers. Single phase half controlled and fully controlled bridge rectifiers. Three phase full controlled bridge rectifiers. Effect of resistive, inductive and resistive cum inductive loads. Basic circuit and principle of operation of Dual Converter, circulating current mode and non-circulating current mode of operation. Applications of rectifiers and dual converters to speed control of DC motor drives. Introduction to AC regulators, types and applications.

13 Hours

S

Inverters: Introduction & Classification of inverter. Operating principle, Single phase half bridge voltage source inverters, Single phase full bridge inverter. Modified McMurray half-bridge and full-bridge inverter. Three-phase bridge inverter. Voltage control (Pulse-width modulation (PWM) control etc.) and reduction of harmonics in the inverter output voltage. Series inverter.

14 Hours

Choppers: Introduction of chopper, Basic chopper classification, Basic chopper operations. Control strategies, Chopper configuration, voltage commutated chopper, Current commutated chopper, Load commutated chopper

14 Hours

- (ii) Bimbhra, P.S., "Power Electronics", Khanna Publishers.
- Singh M.D. and Khanchandani K.B., "Power Electronics", Tata McGraw Hill (iii) Publishing Company limited.
- (iv) Rashid M.H., "Power Electronics, Circuits Devices and Applications", Prentice Hall, India.
- Sen, P.C., "Power Electronics", Tata McGraw Hill Publishing Company limited. (v)
- Bhattacharya S.K. and Chatterji, S., "Industrial Electronics and Control", New (vi) Age international Publications (P) Ltd, New Delhi.
- Dubey, G.K, "Fundamentals of Electrical Drives", Narosa. (vii)
- (viii) Philip T. Krein, "Elements of Power Electronics", Oxford University Press, 2017

Course Title:	Power	Electronics Laboratory	L	Т	Р	Cr						
Course Code:	ELE3	10	0	0	2	1						
Course Outcome: After completion of	CO1	Identify relevant information to supplement Electronics course.	to	the	Ро	wer						
course, the students should be able to	CO2	Set up testing strategies and select proper instruments to evalua performance characteristic of Power devices and power electronics circuits and analyze the operation under differe loading conditions.										
	CO3	Practice different types of wiring and devices connections keeping in mind technical, economical, safety issues.										
	CO4	Realize the limitations of computer simulations for verification circuit behaviour, apply the techniques to different power electronic circuits and evaluate possible causes of discrepancy practical experimental observations in comparison to theory.										
	CO5	Prepare professional quality textual and graphical laboratory data computational results, incorporating accepted daynthesis mathematical software, and word-processing tools	ata a	analy		and and						

To understand the practicability of Power Electronics Laboratory, the list of experiments to be performed in the laboratory is given below

- To analyse principle of operation of SCR, plot V-I characteristics and study the effect of gate triggering on turning on of SCR.
- To draw V-I characteristics of an UJT and to use UJT as relaxation oscillator.
- 3. To study the effect of free-wheeling diode on power factor for single-phase halfwave rectifier with R-L load.
- 4. To plot waveforms for output voltage and current, for single-phase full-wave, fully controlled bridge rectifier, for resistive and resistive cum inductive loads.
- 5. Study of the microcontroller based firing control of a bridge converter.
- 6. To study three phase fully controlled bridge converter and plot waveforms of output voltage, for different firing angles.
- 7. Analyses of Jones chopper or any chopper circuit to check the performance.
- 8. Analyses of Microcontroller based thyristorised speed control of a D.C. Motor.
- 9. Analyses of Microcontroller based speed Control of three phase induction motor using thyristors.
- 10. Analyses of series inverter circuit and to check its performance.
- 11. Analyses of a single-phase cyclo-converter.
- 12. To check the performance of a McMurray half-bridge inverter

Cours	e Title	∋ :		Pov	wei	r Syste		ıbil	ity an	d F	ault A	nalvsi	s)	L	Т	Р	Cr		
Cours	e Cod	le:		EL	E3	842A			- V				,	3	1	0	4		
Cours After course	com	pleti			1	Trans		Loa					g of s m repre						
should		ole to)	CO	2					•			d Unsy aves in				ults.		
				CO	3	Analy	sis of	sta	bility o	of po	ower s	ystem.							
				CO	4	Acquire the knowledge of Neutral Grounding.													
				CO	5	Unde syste		ling	Powe	er 1	flow a	nalysi	s of a	com	plex	ро	wer		
COs			CO1			CO2			CO3			CO4		С	CO5				
	CO	/PO	Mappin	• •	_	^ ′							gth of co		ion):				
COs							,			ım S			ne (PSC)'s)					
	PO 1	P(2 3	4		PO 5	PO 6			PO 8	PO 9	PO 10	PO 11	PO 12	PS 0'		PS O2		
CO1	1	2		2		1	-		-	3	2	1	-	3	3		1		
CO2	2	3		2		- 1	1	1	-	-	1	- 1	- 1	-	3		1		
CO3	3	1		3		1	1			<u>-</u> 1	2	1	1	3 2	3		1 1		
CO5	2	2		1		1	1		-	-	2	1	_	2	2	\dashv	1		
Unit A	per dia the	un gran eled	it systens, line ctrical n	m, sir reacta etwork	ngle nce s me	e line e diagra	diagrar ams, Fo	m corm	of eleculation	trica of i	nl netw mpeda ation, c	orks, s	transformation transformation transformation transformation of section of sec	hase tance seque	impe matri 14 nce r	edan ces Hou netw	for urs orks		
Unit B	line Tra	(LL I nsi e), doub ents in	e line t Powe i	to g r S :	ground ystems	(LLG) f s: Tran	ault sier	s usino nt elect	g sy ric p	mmetrion henom	cal com nenon,	ne-to-gr nponent travellin gainst d	s. ig wav	es, r	eflec	ction		

rises.

C

Stability of Power System: Concepts of stability, power angle characteristics of synchronous, steady state and transient stability swing waves.

Grounding: Grounded & Ungrounded neutral systems, solid grounding, resistance grounding, reactance grounding. Voltage transformer earthing. Harmonic suppressors, grounding practice, grounding of sub-station.

14 Hours

Incidence and Network Matrices: Network graph, various incidence matrices. generalized element representation, primitive network and primitive network matrices, formation of various network matrices by Direct Inspection and singular transformations, interrelations between various incidence matrices and network

Load-Flow Studies: Introduction, importance of load flow studies, classification of buses, load flow equations, iterative methods, computer algorithms and load flow solutions using Gauss Seidel and Newton Raphson load flow solutions, comparison of load flow solution methods.

14 Hours

- Elgerd O.I., "Electric Energy Systems Theory", Tata McGraw Hill
- Nagrath I.J., Kolthari D.P., "Modern Power System Analysis", Tata McGraw Hill 2.
- Stevenson W.D., "Elements of Power System Analysis", McGraw Hill 3.
- Nagrath I.J. and Kothari D.P.," Power System Engineering", Tata McGraw Hill 4.
- 5. Chakrabarti A., Soni, M.L. Gupta P.V. and Bhatanagar U.S., "A Textbook on Power System Engineering", DhanpatRai and Co
- Deshpande M.V., "Switchgears and Protection", Tata McGraw Hill. 6.
- Wadhawa C.L., "A Course in Electrical Power", New Age international Pvt. Ltd 7.
- 8. Gupta B.R., "Power System Analysis & Design", Wheeler Publishing

Course Title:	DESI	GN AND SOFTWARE LABORATORY	L	Т	Р	Cr							
Course Code:	ELE3	17	1	0	3	2							
Course Outcome:	CO1	get a thorough knowledge of MATLAB	et a thorough knowledge of MATLAB										
After completion of course, the students													
should be able to	CO3	apply conceptual things to electrical and electronics problems and application	ns	re	al-w	orld							
	CO4	Relate the software architectural sty suitable applications.	/les	to)	the							
CO5 Have the knowledge of PC based data acquisition													

To understand the practicability of DESIGN AND SOFTWARE LABORATORY, the list of experiments to be performed in the laboratory is given below

- 1.To study the various toolboxes and environment of MATLAB/PSAT/PWSS/ETAP.
- 2. To Draw the Point, Line, Circle and Ellipse using MATLAB
- 3. Write a MATLAB Program to perform various operation of higher order Matrix.
- 4. Write the transfer function of a 1st order system using MATLAB and find the transient response.
- 5. Design of Control Systems using MATLAB and SIMULINK.
- 6. PCB design and layout
- 7. Introduction to PC based data acquisition
- 8. Study of Sensors and signal conditioning circuits.

Sensors and signal conditioning circuits, Electronic system design, Analog system design, Interfacing of analog and digital systems, Embedded systems, Electronic system design employing microcontrollers, CPLDs, and FPGAs, PCB design and layout; System assembly considerations.

Group projects involving electronic hardware (Analog, Digital, mixed signal) leading to Implementation of an application.

Course Title:	Indus	trial Training-I	L	Т	Р	Cr								
Course Code:	ELE3	50	0	0	0	2								
Course Outcome:	CO1	implement the project requiring individual and tean	plement the project requiring individual and teamwork skills											
After completion of course, the students should be able to	CO2	correlate the theoretical concepts with the real life industrial environment.												
	CO3	gather and analyze the scientific information												
	CO4	communicate their work effectively throug presentation	h v	vriti	ng	and								

RBTL No. Mapping:

L1(Remembering), L2(Understanding), L3(Applying), L4(Analysing), L5(Evaluating), L6(Creating)

COs	CO1	CO2	CO3	CO4
RBTL No.	L3	L4	L4	L5

CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):

COs		Program Outcomes (POs)/Program Special Outcome (PSO's)														
COS	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS		
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2		
CO1	3	2	-	2	2	-	-	3	3	3	-	3	3	1		
CO2	3	2	3	3	3	3	2	2	2	3	1	3	3	1		
CO3	3	3	2	3	-	2	2	-	1	3	-	3	3	3		
CO4	1	-	1	1	1	-	-	-	1	3	1	3	1	3		

Objective of the training programme is to

- 1. Enrich the students with a basic understanding of the Electrical Engineering, towards developing a holistic perspective to understand various practical issues and latest trends in the field.
- 2. Familiarize and provide "hands-on" training experience with the requisite simulation, design, and analytical tools and techniques.
- 3. Achieve a long-term goal of transforming themselves into a brilliant blend of theoretician and practicing engineer.
- 4. Introduce the way of troubleshooting various engineering faults related to respective fields.
- 5. Make the students able to present work in written, oral or formal presentation formats.

NOTE: At the end of the examination of 4th Semester the students will undergo compulsory summer training for a period of 4 weeks. Every student will submit the Summer Training Report within two weeks from the start of teaching for 5th Semester.

Cours	e Title	e :		Powe	r Syste		itchge	ars &	Prote	ction)		L	T	Р	Cr	
Cours	e Cod	le:		ELE33	37	·				·		3	1	0	4	
Cours After	com	pletio	n of	CO1				-	-		system, kers an			type	s of	
course	,		udents	CO2	Desig	n the ra	atings f	or fuse	s accor	ding to	the re	quirem	ent			
				CO3		•					nes, vai			sys	tem	
				CO4	unsyr	nmetri		lt studi	es on	the po	olving wer sys	•			and and	
				CO5		rstand ment's	•	rotecti	on	of	diffe	rent	е	lecti	rical	
	RBTL No. Mapping: L1(Remembering), L2(Understanding), L3(Applying), L4(Analysing), L5(Evaluating), L6(Creating)															
COs		(CO1		CO2		C	D 3		CO4		C	Э5			
RBTL	No.	l	_1, L2		L3		L4			L6		L2	2			
	CO	PO M	lapping:	(Strong	g(3) / M	edium(2) / We	ak(1) i	ndicate	s stren	gth of c	orrelat	ion):			
			P	rogram	Outcon	nes (PC	Ds)/Pro	gram S	Special	Outcon	ne (PS0	O's)				
COs	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS		PS	
001	1	2	3	4	5	6	7	8	9	10	11	12	01		02	
CO1	3	1	3	1	1	1	1	3	1	1	1	2	3		2	
CO2 CO3	3	3	2	1	2	1	1	-	1	1 1	1	1	1		2	
CO4	3	3		1		1	-		1	1	1		2		2	
CO5	3	-	1	-	1	-	_	1	1	-	1	1	3		2	
		ı		1	<u></u>					1				1		
Sub-Station: Types, Main equipment in Substation, substation layout, Bus bararrangements. Isolators and Fuses: Isolating switches functions, Types, Rating and operation. Fuse-types, Rating, Selection, theory and characteristics, applications																

Circuit Breakers: Need for Circuit Breakers, Arc phenomenon, Theory of Arc Interruption, Recovery Voltage and Restriking Voltage, Various Types of Circuit Breakers. Principles and Constructional Details of Air Blast, Minimum Oil, SF6, Vacuum Circuit Breakers etc.

Protective Relays: Introduction, classification, constructional features; and Characteristics of Electromagnetic, Induction, Thermal, Overcurrent relays, Directional relays, Distance relays, Differential, Translay, Negative sequence relay, introduction to static and up-based relays.

13 Hours

C

Protection of Feeders: Time graded protection, Differential and Distance protection of feeders, choice between Impedance, Reactance and Mho relays, Elementary idea about carrier current protection of lines.

Protection of Generators and Transformers: Types of faults on alternator, Stator and rotor protection, Negative sequence protection, Loss of excitation and overload protection. Types of fault on transformers, percentage differential protection, Gas relays.

14 Hours

Protection against overvoltage and earthing: Ground wires, Rod gap, Impulse gap, Valve type and Metal Oxide Arresters, Line Arrester/Surge Absorber. Ungrounded neutral system, Grounded neutral system and Selection of Neutral Grounding.

14 Hours

- 1. Wadhawa C.L., "A Course in Electrical Power", New Age internationalPvt. Ltd
- 2. Badri Ram and Vishwakarma D.N., "Power system Protection and Switchgear", Tata McGraw Hill
- 3. Deshpande M.V., "Switchgears and Protection", Tata McGraw Hill
- 4. Nagsarkar T.K. &Sukhija M. S., "Power System Analyses", Oxford University Press.2014
- 5. Rao S., "Switchgear and Protection", Khanna Publishers
- 6. Chakrabarti A., Soni, M.L. Gupta P.V. and Bhatanagar U.S., "A Textbook on Power System Engineering", DhanpatRai and Co.

Course Title:	Contr	ontrol System L T P										
Course Code:	ELE3	38	3	1	0	4						
Course Outcome:	CO1	Acquire the basic knowledge of control engineering	g an	d its	scop	e						
After completion of course, the students should be able to	CO2	Analyze the mathematical model of a system and determine the response of different order systems for standard inputs.										
	CO3	Solve the steady state and transient analysis of standard inputs.	of a	sys	stem	for						
	CO4	Analyze the stability analysis of a system										
	CO5	Analyze closed loop control design problems, PI compensation.	D co	ontro	oller	and						
RBTL No. Mapping:												
L1(Remembering), L2(Understanding), L3(Applying), L4(Analysing), L5(Evaluating), L6(Creating)												

COs	CO1	CO2	CO3	CO4	CO5
RBTL No.	L1, L2	L4	L5	L4	L4

000			Pr	ogram	Outcon	Os)/Pro	gram S	pecial	Outcon	ne (PS0	O's)			
COs	PO	PO	PO	PO	PO	PO	PO	РО	РО	PO	PO	PO	PS	PS
	1	2	3	4	5	6	- /	8	9	10	11	12	01	O2
CO1	3	3	3	2	2	-	-	-	1	2	2	2	3	2
CO2	3	3	2	3	3	3	-	1	2	-	3	-	3	2
CO3	3	2	3	2	2	2	-	-	3	3	2	2	3	2
CO4	2	2	2	2	3	3	-	1	2	-	3	-	3	2
CO5	3	3	3	2	2	1	-	-	1	2	-	2	3	2

Introductory Concepts: Plant, Systems, Servomechanism, regulating systems, disturbances, Open loop control system, closed-loop control systems, linear and non-linear systems, time variant and invariant, continuous and sampled-data control systems, Block diagrams, some illustrative examples.

Modelling of Control System: Formulation of equation of linear electrical, mechanical, thermal, pneumatic and hydraulic system, electrical, mechanical analogies. Use of Laplace transforms, Transfer function, concepts of state variable modelling. Block diagram representation, signal flow graphs and associated algebra, characteristics equation.

14 Hours

 $\mathbf{\omega}$

Time Domain Analysis: Typical test-input signals, Transient response of the first and second order systems. Time domain specifications, Dominant closed-loop poles of higher order systems. Steady state error and coefficients, pole-zero location and stability, Routh-Hurwitz Criterion.

Root Locus Technique: The extreme points of the root loci for positive gain. Asymptotes to the loci, Breakaway points, intersection with imaginary axis, location of roots with given gain and sketch of the root locus plot.

13 Hours

Frequency Domain Analysis: Closed loop frequency response, Bode plots, stability and loop transfer function. Frequency response specifications, Relative stability, Relation between time and frequency response for second-order systems. Log. Magnitude versus Phase angle plot, Nyquist criterion for stability

Introduction to P, I, D, PI, PD, PID Controllers, Digital implementation of controllers.

Compensation: Necessity of compensation, series and parallel compensation, compensating networks, applications of lag and lead-compensation.

14 Hours

Variable Analysis: Concept of state, state variable and state model, state models for linear continuous-time systems, diagonalization solution of state equations, concept of controllability and observability, Discrete-time systems. Pole-placement by state feedback Difference Equations. State-space models of linear discrete-time systems. Stability of linear discrete-time systems.

Control System Components: Error detectors-potentiometers and synchros, servo motors, A.C. and D.C. techno generators, Magnetic amplifiers.

14 Hours

- Nagrath I.J. and Gopal M., "Control System Engineering", Wiley Eastern Ltd
- Ogata K., "Modern Control Engineering", Prentice Hall 2.
- Kuo B. C., "Automatic Control System", Prentice Hall 3.
- Dorf Richard C. and Bishop Robert H., "Modern Control System", Addison -Wesley, 4. Pearson New Delhi

Course Title:	Control System L T P Cr Laboratory	
Course Code:	ELE339 0 0 2 1	
Course Outcome: After completion of course, the students should be able to	analyse the performance of various controllers	
	analyse the mathematical model of a system and determine the response of different order systems.	nd
	solve the steady state and transient analysis of a system.	
	Obtain the characteristics of Thermocouple 4	
	be competent in using MATLAB software to analy closed loop control design problems design compensating networks.	

RBTL No. Mapping: L1(Remembering), L2(Understanding), L3(Applying), L4(Analysing), L5(Evaluating), L6(Creating)														
COs			CO1		CO2		(03		CO4		С	05	
RBTL N	lo.		L2, L	4	L4		I	<i>A</i>		L2		L	.6	
CO/PO	Mappi	ing: (St	rong(3) / M	edium((2) / W	eak(:	L) indica	ates sti	rength o	f correla	ation)):	
	Progr	am Ou	tcome	s (PO	s)/Prog	gram S _l	pecia	l Outco	me (PS	SO's)				
COs	PO1	PO2	PO3	PO 4	PO5	PO6	PO 7	PO8	PO9	PO10	PO11	PO 12	PSO1	PSO2
CO1	3	2	2	1	1	1	-	-	1	1	2	2	3	2
CO2	3	2	2	1	2	-	-	-	1	-	2	3	1	2
CO3	2	2	3	1	2	-	-	-	1	1	2	2	2	2
CO4	1	2	2	3	2	1	-	-	1	-	2	3	1	1
CO5	1	2	3	1	2	_	-	_	-	1	2	2	2	2

List of Experiments:

- Experiment to analyse D.C. position control system.
- 2. Experiment to analyse light intensity control using P, I, D & PID controller.
- 3. Experiment to perform D.C. motor speed control.
- 4. Experiment to use ON/OFF temperature controller.
- Experiment to analyse Temperature control system.
- 6. Experiment to analyse Compensation design.
- 7. Experiment to analyse relay control system.
- 8. Experiment to use Potentials metric Error Detector.
- 9. Experiment to analyses synchros.
- Experiment to measure the displacement using LVDT.
- 11. Experiment to measure the temperature using RTD.
- 12. Experiment to measure the temperature using Thermocouple.
- 13. Experiment to study the voltage induced using photo transistor, photodiode.
- 14. Write a program in MATLAB to find poles and zeros of transfer function and show poles as zeros in s-plane.
- 15. Write a program in MATLAB to draw unit step, ramp and parabolic response of second-order system.
- 16. Write a program in MATLAB to determine the time response for unity feedback control system.
- 17. Write a program to determine the static error coefficients and steady-state error for an open loop transfer function using test signals.
- To verify Bode plot for higher order system using MATLAB.
- 19. To verify Root locus for higher order system using MATLAB.

Hands-on/Computer experiments related to the course contents

Course Title:	Electi	rical Machines- III(Synchronous Machines)	L	Т	Р	Cr			
Course Code:	ELE3	340	3	1	0	4			
Course Outcome:	CO1	Concept of rotating Magnetic field							
After completion of course, the students	CO2	Understanding in-depth analysis of alternator	nding in-depth analysis of alternator						
should be able to	CO3	Two reaction theory for salient pole alternator							
	CO4	Synchronous motors various torque such the running, pull-in and pull-out torque.	at lo	ocke	d-ro	tor,			
	CO5	Expression of torque/ effect of Excitation							
Synchronous	Conor	parators I (Alternator). Advantage of retating field Polation							

Synchronous Generators-I (Alternator): Advantage of rotating field, Relation between speed and frequency, stator and rotor construction Excitation system for synchronous machine, EMF Equation of an alternator, Armature winding, Coil span factor and pitch factor, Distribution factor or breadth factor.

14 Hours

Synchronous Generators-II (Alternator): Armature reaction in synchronous machine, concept of synchronous impedance, Equivalent circuit and Phasor diagram of a synchronous Generator, Voltage Regulation, and its determination by indirect methods such as Synchronous impedance method, Ampere-turn Method, and Zero Power factor method. Power flow transfer equations for a synchronous Generator, Expression for Complex power output and input of the generator per phase, per phase maximum input and output power for alternator.

14 Hours

S

Synchronous Generators-III (Alternator): Two reaction theory, Torque angle characteristics of a salient pole synchronous machine Maximum reactive power for a synchronous generator. Synchronous Generator capability curve, prime-movers characteristics, Expressions for Powers shared by two alternators, Parallel operation of alternators its need, condition and synchronizing process.

13 Hours

Synchronous Motor: Principle of operation, Equivalent circuit and phasor diagram of a cylindrical rotor synchronous motor, concept of various torque such that lockedrotor, running, pull-in and pull-out torque. Power flow equation, Phasor diagram of salient pole synchronous motor. Expression for developed power by a synchronous motor, Effect of varying field current. Torque developed in cylindrical rotor/salient rotor, V curve and Hunting.

14 Hours

- 1. Kothari D.P. & Nagrath I.J., "Electric Machines", Tata McGrawHill
 - 2. Ghosh Smarajit, "Electric Machines", Pearson
 - 3. Fitzerald, A.E., Kingsley and S.D. Umans, "Electric Machinery", McGraw Hill.
- 2. 4.PrithwirajPurkait&IndrayudhBandyopadhyay. "electricalMachines",Oxford Press,2017ed. University
 - 5. BimbhraP.S., "Electrical Machinery", Khanna Publisher

Course Title:		Electr	rical Safety	and Standard	ls	L	Т	Р	Cr			
Course Code:		ELE3	43	3	0	0	3					
Course Outcome:		CO1	Describe ele	Describe electrical hazards and safety equipment.								
After completion course, the stu		CO2	Analyze and apply various grounding and bonding techniques.									
should be able to		CO3	Select appropriate safety method for low, medium and high voltage equipment.									
		CO4	Participate in a safety team									
		CO5	Carry out proper maintenance of electrical equipment by understanding various standards									
RBTL No. Mapping	g:											
L1(Remembering),	, L2(Un	derstan	ding), L3(App	lying), L4(Analy	sing), L5(Evaluating), I	_6(C	reati	ng)				
COs C	:01		CO2	CO3	CO4	CC) 5					
RBTL No.	2		L3, L4	L3	L3	L3	i					
				<u>.</u>	·	•						

000			Pr	ogram	Outcon	nes (PC	Os)/Pro	gram S	pecial	Outcon	ne (PS0	O's)		
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2
CO1	3	-	2	-	3	3	-	-	2	2	3	3	2	2
CO2	2	3	3	3	3	3	1	-	2	-	-	2	3	2
CO3	3	2	3	2	3	3	-	2	2	-	2	3	2	3
CO4	3	1	2	-	1	2	ı	2	3	3	2	-	2	2
CO5	3	3	3	3	3	2	-	2	3	3	2	3	3	2

Introduction: Introduction to the concept of safety, safety provisions in the factory act laws related to the industrial safety, measurement of safety performance, safety audit, work permit system, injury and accidents, definitions, unsafe act, unsafe condition, causes, investigations and prevention of accidents, hazards, type of industrial hazards, nature, causes and control measures, hazard identifications and control techniques, HAZOP, FMEA, FMECA etc.

Summarization of International and National standards related to this course.

$\mathbf{\omega}$

Concept of Industrial hygiene, programmed: Recognition, Evaluation, Control, noise source, effects and noise control, exposure limits standards, hearing conservation programmed, Fire, fire load, control and industrial fire protection systems, fire hydrant and extinguishers, electrical hazards, protection and interlock, discharge rod and earthling device, safety in the use of portable tools.

12 Hours

S

Logics of consequence analysis: Estimation-Toxic release and toxic effects, threshold limit values, emergency planning and preparedness, air pollution classification, dispersion modelling, pollution source and effects, control method and equipment's gravitational settling chambers, cyclone separators, fabric filter systems, scrubbers.

12 Hours

Concept of reliability: Definition-Failure rate and hazard function, system reliability models series, parallel systems, reliability hazard function for distribution functions, exponential normal, lognormal, Weibull and gamma distribution.

12 Hours

Suggested Books:

1Crowl, Daniel A., and Joseph F. Louvar. Chemical process safety: fundamentals with applications. Pearson Education, 2001.

- 2 Cameron, Ian T., and Raghu Raman. Process systems risk management. Elsevier, 2005.
- 3. Gupta, Amit. Industrial safety and environment. Firewall Media, 2006.
- 4. Daugherty, Jack E. Industrial safety management: a practical approach. Government Institutes, 1998.
- 5. Deshmukh, L. M. Industrial Safety Management: Hazard Identification and Risk Control. McGraw-Hill Education, 2005.

Course Title:	Power	r System Laboratory	L	Т	Р	Cr			
Course Code:	ELE3	0	0	2	1				
Course Outcome: After completion of course, the students should be able to	CO1	Carryout experiments ensuring the safety of personnel	equ	iipme	ent	and			
	CO2	Interpret the experimental results and correlatin practical power system.	g th	em	with	the			
	СОЗ	analyze the performance of a transmission line	alyze the performance of a transmission line						
	CO4	Analyze the power system data for load-flow and fault studies							
	CO5	Apply computational methods for large scale power system studies							

To understand the practicability of Power System Laboratory, the list of experiments to be performed in the laboratory is given below

- To measure the dielectric strength of transformer oil.
- 2. To find string efficiency of string insulator.
 - Without guard ring
 - ii. With guard ring
- 3. To analyze the performance of a transmission line. Also compute its ABCD parameters, hybrid parameter and image parameter of given transmission model.
- To plot power angle characteristics of transmission line.
- 5. Parallel operation of two alternators.
- To create unbalanced voltage system and to measure the sequence voltage by segregating network.
- 7. To study the characteristics of transmission line represented by
 - ii. T- network
 - iii. Pie-network.
- To analyse the characteristics of differential relay.
- To plot the characteristics of an IDMT static relay.
- 10. Testing of current transformer.
- 11. To find zero sequence component of three-phase line.
- 12. To draw the characteristics of thermal overload relay.
- 13. To analyze the characteristics of overcurrent and earth fault protection.
- 14. To perform the experiment for the operating characteristics of fuse. (HRC or open type)
- 15. To find the earth resistance and electrode resistance using three spikes/Megger earth tester test electrodes.
- 16. To study the different types of faults on transmission line/on three phase transformer demonstration panel/model.
- 17. To analyze the radial feeder performance when (a) Fed at one end. (b) Fed at both ends (c) Fed at center (d) Ring main distribution system
- 18. To perform the experiment for the performance of under voltage relay
- 19. To perform the experiment for the working of overvoltage relay.
- 20. To perform the experiment for the characteristics of bimetal mini circuit breakers.
- 21. To perform the experiment for the characteristics of Distance Relay.
- 22. To perform short circuit analysis symmetrical faults.
- 23. To perform short circuit analysis unsymmetrical faults.
- 24. To perform transient stability analysis.
- 25. To perform harmonic analysis.

S
نب
\subseteq
a
=
⊏
-
$\overline{}$
\mathbf{x}
2
×
ш
_
0
·
Ś
_

Course Title:		NCHRONOUS &SYNCHRONOUS HINES Laboratory	L	Т	Р	Cr					
Course Code:	ELE3	41	0	0	2	1					
Course Outcome:	CO1	Perform Load/No-Load test on Induction motor									
After completion of course, the students	CO2	Introduction of Kramer drive									
should be able to	CO3	Study of torque-slip/ Power-slip characteristi motor.	cs c	of In	duc	tion					
	CO4	Perform Load/No-Load test on single phase In	duct	tion	mot	or					

To understand the practicability of ASYNCHRONOUS & SYNCHRONOUS MACHINES Laboratory, the list of experiments to be performed in the laboratory is given below

- To perform load-test on three-phase Induction motor and to plot torque versus 1. speed characteristics.
- 2. To perform no-load and blocked-rotor tests on three-phase Induction motor to obtain equivalent circuit.
- 3. To perform the speed control of three-phase Induction motor by Kramer's Concept.
- To perform the speed control of three-phase Induction motor by cascading of two 4. induction motors, i.e. by feeding the slip power of one motor into the other motor.
- 5. To use star- delta starters physically and
 - a) To draw electrical connection diagram
 - b) To start the three-phase Induction motor using it.
 - c) To reverse the direction of three-phase Induction motor
- To start a three-phase slip-ring induction motor by inserting different levels of 6. resistance in the rotor Circuit and to plot torque-speed characteristics.
- 7. To perform no-load and blocked-rotor test on single-phase Induction motor and to determine the parameters of equivalent circuit. Drawn on the basis of double revolving field theory.
- To perform load-test on single-phase. Induction motor and plot torque-speed 8. characteristics.
- 9. To perform no load and short circuit. Test on three-phase alternator and draw open and short circuit characteristics.
- To find voltage regulation of an alternator by zero power factor (ZPF) method. 10.
- To study effect of variation of field current upon the stator current and power factor 11. with synchronous motor running at no load and draw Voltage and inverted Voltage curves of motor.
- 12. To measure negative sequence and zero sequence reactance of Synchronous Machines.
- Parallel operation of three-phase alternators using 13.
 - Dark lamp method
 - Two-Bright and one dark lamp method
- To use synchro scope physically and parallel operation of three-phase alternators 14. using synchro scope.
- Starting of synchronous motors using 15.
 - Auxiliary motor
 - Using Damper windings

Course	Title:	Tech	nical Communication	L	Т	Р	Cr		
Course	Code:	ENG	351	3	0	0	3		
Course	Outcome:	CO1	Nature of Technical Communication						
course,	completion of the students be able to	CO2	Barriers to Communication						
snoula	de adie to	СОЗ	Conversation: Formal and Informal						
		CO4	Report Writing						
CO5 C.V. and Resume&Business Letters formation									
Unit A	Nature of Technical Communication Verbal and Non-Verbal Communication Barriers to Communication								
Unit B	Conversation: Sounds of Engl Panel Discussion Oral Presentation	lish (Spon and				Ηου	0		
	D . W.				12	Ηοι	ırs		
Unit C	Report Writing Business and T Memos		cal Proposals						
	CV 1D				12	Ηοι	ırs		
Unit D	C.V. and Resur Business Lette Interview		Application Letters						
	1				12	Ηοι	ırs		
Sugges	sted Books:								

- 1. Koneru, Aruna. Professional Communication. Delhi: McGraw, 2008. Print.
- 2. Rizvi, M. Ashraf. Effective Technical Communication. Delhi: McGraw, 2005. Print.
- 3. Sharma, R.C. and Krishna Mohan. Business Correspondence and Report Writing. Delhi: McGraw, 2013. Print.
- 4. Tyagi, Kavita and Padma Misra. Basic Technical Communication. Delhi: PHI Learning, 2013. Print

Course Title:		Elect	ric Drives			L	Т	Р	Cr		
Course Code:		ELE3	326			3	1	0	4		
Course Outco	etion of	CO1	To understand drives.	Fundamen	tals theoretical conc	epts	of	elec	etric		
course, the students should be able to CO2 Analyse the performance of dc motor drives											
		CO3		Analyse the performance of induction motor drives for various operating conditions							
		CO4	To understand dynamics of electrical Drive								
		CO5	To acquire the k	_	of drives in industry in lled drives.	spec	ial r	efere	ence		
COs	CO1		CO2	CO3	CO4	C) 5				
RBTL No.	L2		L4	L4	L4	L2					
l											

000		Program Outcomes (POs)/Program Special Outcome (PSO's)													
COs	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	
	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	
CO1	3	-	-	1	2	-	-	1	3	1	-	2	1	-	
CO2	2	2	-	2	-	1	-	-	2	-	-	-	3	2	
CO3	2	2	3	3	1	-	1	-	1	1	1	1	2	3	
CO4	3	2	1	-	-	1	-	1	2	1	ı	2	3	1	
CO5	3	-	3	1	1	1	-	-	1	1	-	2	2	1	

Introduction: Definition & Classification of different type of drives, review of characteristics and components of electric drives, speed control methods of various a.c. and d.c. drives, its advantages and applications, acceleration and retardation time, energy consideration.

Braking of drives: Various methods of braking of a.c. and d.c. drives, automatic control arrangement, characteristics and application, acceleration and retardation time, energy consideration.

14 Hours

 $\mathbf{\omega}$

D.C. drives: Rectifier controlled circuits, single phase fully controlled and half controlled rectifier fed separately excited d.c. motor, 3-phase fully and half controlled fed separately excited d.c. motor, performance and characteristics of single phase and 3-phase rectifier controlled d.c. drives. Control techniques of d.c. drives using chopper, multi-quadrant control of chopper fed motors.

Induction motor (A.C) drives: Basic principle of induction motor drives, 3-phase a.c. voltage controller fed I.M. drive, variable frequency control, voltage source inverter (VSI) and current source inverter (CSI), Cycloconverter fed IM drive, slip power control, static rotor resistance control, chopper control of 3-phase slip ring induction motor.

Dynamics of electric drives: Components & classification of load torque, fundamental load torque equation, permissible frequency of starting and stopping, definite time, speed torque conventions. Speed and current limit control, automatic starting and pulling operation of synchronous motors.

14 Hours

Synchronous Motor Drive: Control of Synchronous Motors: Separate control & self-control of synchronous motors – Operation of self-controlled synchronous motors by VSI and CSI cycloconverters. Load commutated CSI fed Synchronous Motor – Operation – Waveforms – speed torque characteristics – Applications -Advantages and Numerical Problems - Closed Loop control operation of synchronous motor drives (Block Diagram Only), variable frequency control, Cyclo converter, PWM, VFI, CS

14 Hours

- 1. Filizadeh, Shaahin. Electric machines and drives: principles, control, modeling, and simulation. CRC Press, 2013.
- 2. Boldea, Ion, and Syed A. Nasar. *Electric drives*. CRC press, 2016.
- 3. Subrahmanyam, Vedam. Thyristor control of electric drives. Tata McGraw-Hill Education, 1987
- 4. Siskind, Charles Seymour. Electrical Control Systems in Industry. Glencoe/McGraw-Hill School Publishing Company, 1963.
- 5. Dubey, Gopal K. Fundamentals of electrical drives. CRC press, 2002..

Course Title:	Micr	oprocessors and Microcontrollers	L	Т	Р	Cr				
Course Code:	ELE4	10	4	0	0	4				
Course Outcome:	CO1	study about history, architecture of Microprocessor microcontroller 8051.	r. 80)85 a	and					
After completion of course, the students	CO2	develop knowledge of programming of 8051 micro assembly language.	cont	rolle	r usi	ng				
should be able to	соз	analyze 8051 microcontroller design, memory map data transmission.	ping	anc	ser	ial				
	CO4	be conversant in application of 8051 microcontrolle	er.							
	CO5	be aware in the application of PLC and its programming.								
RBTL No. Mapping:										

L1(Remembering), L2(Understanding), L3(Applying), L4(Analysing), L5(Evaluating), L6(Creating)

COs	CO1	CO2	CO3	CO4	CO5
RBTL No.	L1	L1,L2,L3	L4	L4,L5	L5

CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):

			Pr	ogram	Outcon	nes (PC	Os)/Pro	gram S	pecial	Outco	me (P	SO's)		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	PO	PO	PO	PSO	PSO2
	101	102	103	104	103	100	107	100	9	10	11	12	1	1502
CO	3	-	-	-	3	2	-	-	-	1	-	2	3	1
1														
CO	3	3	3	2	2	1	-	-	2	2	2	2	3	1
2														
CO	3	3	2	3	2	2	-	-	-	2	3	2	3	1
3														
CO	3	2	3	2	3	1	1	-	-	2	-	2	3	1
4														
CO	3	2	3	2	3	3	1	-	2	3	2	3	3	1
5														

Introduction: Microprocessor, Fundamentals of Microprocessor Architecture. 8-bit microprocessor and Microcontroller architecture, Comparison of 8-bit microcontrollers, 16-bit and 32-bit microcontrollers. Micro-controllers and their comparison. The 8051 Architecture: Introduction, 8051 micro-controller hardware, input/ output, pins, ports and circuits, external memory, counters and timers, serial data input/output, interrupts

8051 Assembly Language Programming: The mechanics of programming, assembly language programming process, programming tools and techniques, instruction set (data moving, logical operations, arithmetic operations, jump and call instructions)

 $\mathbf{\omega}$

8051 Microcontroller Design: Micro-controller specification, external memory and memory space decoding, reset and clock circuits, expanding input and output (I/O), memory mapped I/O, memory address decoding, memory access times, testing the design, timing subroutines,

Look up tables for the 8051, serial data transmission.

14Hours

0

Microcontroller Applications: RS232, SPI, I2C. Introduction and interfacing to protocols like Blue-tooth and Zig-bee. Interfacing keyboards, displays, Digital-to-Analog (D/A) and Analog-to-Digital (A/D), multiple interrupts, serial data communications, introduction to the

use of assemblers and simulators Embedded Systems: Stepper motor interfacing, DC Motor interfacing, sensor interfacing, technology and design issues, implementation of 8051 core

13 Hours

۵

Programmable Logic Controllers (PLC): Introduction, operation of PLC, difference between PLC and Hardwired system, difference between PLC and Computer, relay logic and ladder logic, ladder commands and examples of PLC ladder diagram realization, PLC timers. PLC counters. PLC classification.

Projects related to this course should be given to students(in groups) in order to promote team work and ethical values.

14 Hours

Suggested Books:

Kenneth J Ayala, "The 8051 Micro Controller- Architecture, Programming and Application", Penram International Publication

- 2. John B Peatman,, "Design with Micro Controller", Tata McGraw Hill
- 3. Ray A. K. and Bhurchandi K. M., "Advanced Microprocessors and Peripherals; Architecture, Programming and Interfacing", Tata McGraw Hill
- 4. Mazidi M. A. and Mazidi J. G., "The 8051 Micro-controller and Embedded System", Pearson Education.
- 5. Udayashankara V. and Mallikarjunaswamy M.S., "8051 Microcontroller Hardware, Software and Applications", TataMcGraw Hill Education Pvt. Ltd., 2010.

1.

Course Title:		processors, Microcontroller and PLC ratory	L	T	Р	Cr
Course Code:	ELE4	11	0	0	2	1
Course Outcome: After completion of	CO1	create programmes for various mathematical operaddition, subtraction of numbers in decimal, hexad system.				CD
course, the students should be able to	CO2	develop the understanding of various microprocess microcontroller kits.	sor a	and		
	CO3	gain practical understanding of the programmable	logic	cor	sole	!
	CO4	implement ladder logic programming for small app	licati	ons.		
	CO5	develop programming codes for laboratory projects	s			

RBTL No. Mapping:

L1(Remembering), L2(Understanding), L3(Applying), L4(Analysing), L5(Evaluating), L6(Creating)

COs	CO1	CO2	CO3	CO4	CO5
RBTL No.	L1,L2	L2	L3	L4	L5,L6

CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):

СО	Program Outcomes (POs)/Program Special Outcome (PSO's)													
S	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PS	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	O1	2
CO 1	3	3	2	3	2	2	-	1	2	2	-	2	2	1
CO 2	2	2	2	1	2	2	1	-	1	2	2	2	1	1
CO 3	3	-	2	3	2	2	-	-	1	2	2	2	1	1
CO 4	3	2	2	3	-	2	1	1	2	2	2	2	2	1
CO 5	3	2	3	3	2	2	1	1	2	2	2	3	2	1

To understand the practicability of Microprocessors, Microcontroller and PLC Laboratory, the list of experiments to be performed in the laboratory is given below

- 1. Study of 8085/8086 microprocessor kits.
- 2. Study of 8051/8031 Micro-controller kits.
- 3. Write a program to add two 8 bit numbers lying at two memory locations and display the result using 8051 MC.
- 4. Write a program to subtract two 8-bit numbers lying at two memory locations and display the result using 8051 MC.
- 5. Write a program for multiplication of two 8-bit numbers lying at memory location and display the result using 8051 MC.
- 6. Write a program for division of two 8-bit numbers lying at memory location and display the result using 8051 MC.
- 7. Write a program to perform multibyte addition of numbers lying at two memory locations and display the result using 8051 MC
- 8. Write a program to display largest number in an array and show the result on display
- 9. Write a program to arrange TEN numbers stored in memory location in ascending and descending order.
- 10. Write a program to convert BCD to Hexadecimal of a given number.
- 11. Write a program to convert Hexadecimal to BCD of a given number
- 12. Write a program to calculate the square root of a number.
- 13. Implementation of DOL and star delta starter using PLC.
- 14. Implementation of star delta starter using timer in PLC
- 15. Make a PLC-based control system for conveyor belt.

Course Title:	Proje	ect Laboratory L T P C											
Course Code:	ELE4	51A	0	0	8	4							
Course Outcome: After completion of	CO1	communicate their work effectively through presentation.	h v	writin	ng	and							
course, the students should be able to	CO2	use research based knowledge in the latest area of	of tec	hnol	ogy.								
	CO3	engage in independent and life-long learning.											
	CO4	implement the project requiring individual and tean	nwoi	k sk	ills.								
CO5 carry out design calculations and implementations in the are project.													

RBTL No. Mapping:

L1(Remembering), L2(Understanding), L3(Applying), L4(Analysing), L5(Evaluating), L6(Creating)

COs	CO1	CO2	CO3	CO4	CO5
RBTL No.	L2	L1,L2	L3	L4	L6

CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):

		Program Outcomes (POs)/Program Special Outcome (PSO's)												
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PS	PS
	101	102	103	104	103	100	107	100	10)	0	1	2	O1	O2
CO	3	-	-	-	2	2	-	-	3	3	-	3	3	1
1														
CO	3	2	3	3	3	3	-	-	2	3	1	3	3	1
2														
CO	3	3	2	3	2	2	-	-	-	3	-	3	3	3
3														
CO	3	1	1	-	-	1	-	-	1	3	1	3	1	3
4														
CO	3	2	3	3	2	3	-	-	2	-	1	3	3	1
5														
•														

The objective of Project Work is to enable the student to take up investigative study in the broad field of Electrical Engineering, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on an individual basis or two/three students in a group, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R&D work. The assignment normally includes:

- 1. Survey and study of published literature on the assigned topic;
- 2. Working out a preliminary approach to the Problem relating to the assigned topic;
- 3. Conducting preliminary analysis/Modelling/Simulation/Experiment/Design/Feasibility.
- 4. Preparing a Written Report on the Study conducted for presentation to the Department.
- 5. Final Seminar, as oral Presentation before a Departmental Committee including external expert

Course Title:		Indus	trial Training-	L	Т	Р	Cr					
Course Code:		ELE4	106A			0	0	0	2			
Course Outcor	ne:	CO1	implement the project requiring individual and teamwork skills									
After complete course, the should be able to	students	CO2	correlate the the environment.	neoretical co	oncepts with the re	al li	fe i	ndus	trial			
		CO3	gather and analyze the scientific information									
		CO4	communicate presentation	their work	effectively throug	gh v	writi	ng	and			
RBTL No. Mapp	oing:											
L1(Remembering), L2(Understanding), L3(Applying), L4(Analysing), L5(Evaluating), L6(Creating)												
COs	CO1		CO2	CO3	CO4							
RBTL No.	L3		L4	L4	L5							

000		Program Outcomes (POs)/Program Special Outcome (PSO's)													
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	
CO1	3	2	-	2	2	-	-	3	3	3	-	3	3	1	
CO2	3	2	3	3	3	3	2	2	2	3	1	3	3	1	
CO3	3	3	2	3	-	2	2	-	1	3	ı	3	3	3	
CO4	1	1	1	1	1	1	-	-	1	3	1	3	1	3	

Objective of the training programme is to

- 1. Enrich the students with a basic understanding of the Electrical Engineering, towards developing a holistic perspective to understand various practical issues and latest trends in
- 2. Familiarize and provide "hands-on" training experience with the requisite simulation, design, and analytical tools and techniques.
- 3. Achieve a long-term goal of transforming themselves into a brilliant blend of theoretician and practicing engineer.
- 4. Introduce the way of troubleshooting various engineering faults related to respective fields.
- 5. Make the students able to present work in written, oral or formal presentation formats.

Note: The end of the examination of 6th Semester the students will undergo compulsory summer training for a period of 6 weeks. Every student will submit the Summer Training Report within two weeks from the start of teaching for 7th Semester.

Course Title:		Utiliz	L	Т	Р	Cr							
Course Code:		ELE4	12 4 0										
Course Outcon After complet		CO1	'	acquire the knowledge of different type of electrical heating and welding methods									
course, the students should be able to		CO2	know about vari	ous electrical ratir	ng of motors								
		СОЗ	fulfill the objective of utilization application of electrical energy in electrochemical process										
		CO4	know about various electrical circuits used in refrigeration and air conditioning.										
		CO5	analyze the various methods of illumination and electric traction system.										
RBTL No. Mapp	ing:												
L1(Rememberin	L1(Remembering), L2(Understanding), L3(Applying), L4(Analysing), L5(Evaluating), L6(Creating)												
COs	CO1		CO2 CO3 CO4) 5						
RBTL No.	L1		L2, L3	_2, L3 L3 L1 L4									

000			Pr	ogram	Outcon	nes (P0	Os)/Pro	gram S	pecial	Outcon	ne (PS0	O's)		
COs	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PS
	1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	3	ı	2	ı	2	1	1	ı	3	2	2	-	3	2
CO2	3	2	2	2	2	2	1	ı	3	-	2	2	3	3
CO3	3	3	3	2	-	2	-	-	3	-	-	1	3	3
CO4	2	2	3	2	2	2	-	-	3	2	2	2	3	3
CO5	3	3	3	3	3	3	1	-	3	2	2	-	3	3

⋖

Illumination: Term used in illumination, Law's of illumination, sources of Light, arc lamp incandescent lamp, discharge lamp, sodium vapor, mercury vapor lamp, Fluorescent tubes, lightening schemes, method of lightning calculation.

14 Hours

 $\mathbf{\omega}$

Electrical Heating: Advantages of Electrical Heating, various types of Electrical heating, Power frequency and High-frequency heating, Degree of heating element, Equivalent circuit of arc furnace, Resistance heating, Arc heating, Induction heating, dielectric heating etc.

Electric Welding: All types of electrical welding, resistance welding, arc welding, electrical winding equipment, Comparison between AC & DC welding, types of electrodes, advantages of coated electrodes.

C

Electroplating: Basic principle, Faraday's law of electrostatics, terms used, Application of electrolysis, factors governing electrodeposition, power supply.

Refrigeration & Air Conditioning: Basic principle, various compression cycle & system its application, electric circuit of refrigerator, air conditioner.

14 Hours

Traction Motors: Different system of electric traction, comparison between AC & DC system, block diagram of traction system, Starting-Speed control and braking-Speed control and braking -Speed time curves, -Mechanics of Train Movement-Tractive effort for acceleration - Power and energy output from driving Axles-Specific energy output and Consumption-Train resistance.

Rating of motors: Determination of motor rating, nature of loads and classes of motor duty, frequency of operation of motor subjected to intermittent loads, pulse loads etc. thermal model of motor for heating and cooling.

14 Hours

- 1. Uppal S.L., "Electrical Power" Khanna Publishers, New Delhi,1980.
- 2. Soni M.L., Gupta P.V., Bhatnagar U.S., Chakrabarti ,A"A Text Book On Power System Engineering", DhanpatRai& Co, 1998.
- 3. Pratap H, "Art and Science of Utilization of Electric Energy", DhanpatRai&Sons,New Delhi,1980.
- 4. Gupta J.B. "Utilization of electric power and Electric Traction", S.K. Kataria & Sons.
- 5. Garg, G.C. "Utilization of Electric Power and Electric Traction", Khanna publishers, New Delhi, 1995.

Course Title:	High	Voltage Engineering	L	Т	Р	Cr						
Course Code:	ELE4	4	0	0	4							
Course Outcome:	CO1	develop the concept of high voltage transmission.	evelop the concept of high voltage transmission.									
After completion of course, the students	CO2	acquire the knowledge of conducting and insurequirements in voltage transmission system.	nate	rials								
should be able to	CO3	Gain the knowledge of the various overvoltage in power system and methods against them.		easc p		of ction						
	CO4	Understand the insulation coordinates design of insulation levels of various power system.		on pa		and of						
	CO5	gain the knowledge of high voltage generation.										

RBTL No. Mapping:

L1(Remembering), L2(Understanding), L3(Applying), L4(Analysing), L5(Evaluating), L6(Creating)

COs	CO1	CO2	CO3	CO4	CO5
RBTL No.	L1,L2	L2	L2	L4	L2

CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):

Program Outcomes (POs)/Program Special Outcome (PSO's))		
COs	PO1	PO2 PO3	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO
	101		104	103	100	107	100	10)	0	1	2	1	2	
CO1	3	-	-	1	2	-	-	-	1	3	-	3	2	1
CO2	3	1	1	3	2	1	-	-	1	2	-	2	2	2
CO3	3	2	-	2	2	2	1	-	2	2	1	2	3	2
CO4	3	1	1	-	2	2	1	-	2	2	-	2	2	2
CO5	3	3	2	1	1	2	-	1	1	2	1	2	3	2

E.H.V. Transmission and Corona Loss; Need for EHV transmission. Use of bundled conductors, corona characteristics of smooth bundled conductors with different configurations, corona loss. Factors affecting the corona loss, radio interference due to corona. Shunt and series compensation in EHV lines. Tuned power lines. Insulation coordination.

HVDC Transmission: Advantages, disadvantages and economics of HVDC Transmission system. Types of D.C. links, converter station equipment, their characteristics

Lightning and Switching Over-voltages: Charge formation in clouds, stepped leader, dart leader, lightning surges. Switching over voltages, protection against over-voltages, surge diverters, surge modifiers.

Conduction and breakdown in Gases, Liquids & Solid Dielectrics: Solids - Intrinsic, electromechanical and thermal breakdown composite dielectrics, solid dielectrics used in practice. Liquids: - Conduction and breakdown in pure and commercial liquids, suspended particle theory, cavitation and bubble theory, stressed oil volume theory, liquids used in practice. Gases: - Ionization process, Townsend's current growth equations, 1st and 2nd ionization coefficients. Townsend's criterion for breakdown. Streamer theory of breakdown, Pashen's law of Gases, Gases used in practice.

13 Hours

Generation of High Voltages: D.C., A.C. (Power frequency and High frequency) impulse voltage and impulse current generation tripping and contact of impulse generator

Test procedures in H.V. Engineering Lab.: Testing of cables, insulators, bushings, circuit breakers and transformers.

14 Hours

Measurements of High Voltages and Currents: Peak voltage, impulse voltage and high direct current measurement method, cathode ray oscillographs for impulse voltage and current measurement, measurement of dielectric constant and loss factor, partial discharge measurements.

Projects related to this course should be given to students(in groups) in order to promote team work and ethical values.

14 Hours

- Bagamudre, Das Rakesh, "Extra High Voltage A.C. Transmission Engineering", New Age International Publishers.
- 2. Kimbark E.W., "High Voltage Direct Current Transmission", Wiley-Interscience
- 3. Kamaraju V. and Naidu M.S., "High Voltage Engineering", Tata McGraw-Hill Education

Course Title:		Semin	ar	L	Т	Р	Cr					
Course Code: ELE452							0	4	2			
Course Outcon	ne:	CO1	communicate th presentation.	communicate their work effectively through writing and presentation.								
After completion of course, the students should be able to		CO2	use research-ba	use research-based knowledge for presentation								
		CO3	engage in effective communication to display the technical knowledge efficiently and life-long learning.									
		CO4	implement the confidence to represent latest knowledge									
		CO5	carry out awareness and regular facts of the to									
COs	CO1		CO2	CO3	CO4	CO5			-			
RBTL No.	L2, L3		L3	L3 L3 L6								

00-		Program Outcomes (POs)/Program Special Outcome (PSO's)												
COs	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PS
	1	2	3	4	5	6	/	8	9	10	11	12	01	02
CO1	3	-	-	-	2	2	-	-	3	3	-	3	3	1
CO2	3	2	3	3	3	3	-	-	2	3	1	3	3	1
CO3	3	3	2	3	2	2	-	-	-	3	-	3	3	3
CO4	3	1	1	-	-	1	-	-	1	3	1	3	1	3
CO5	3	2	3	3	2	3	-	-	2	-	1	3	3	1

Individual students are required to choose a topic of their interest from energy-related engineering topics preferably from outside the B.Tech syllabus and give a seminar on that topic about 30 minutes followed by a 10 minutes session for discussion/question and answers. A committee consisting of at least three faculty members (preferably specialized in Electrical Engineering) shall assess the presentation of the seminar and award marks to the students. Each student shall submit two copies of a write up of his / her seminar topic. One copy shall be returned to the student after duly certifying it by the Chairman of the assessing committee and the other will be kept in the departmental library. Internal continuous assessment marks are awarded based on the relevance of the topic, presentation skill, quality of the report and participation.

Note:

- The seminar topic selected by the student must be approved by the authorized faculty of the i. department at least two weeks in advance.
- ii. Each student has to submit to the department a seminar report at least three days before the day of seminar.
- iii. Each student has to make the PowerPoint presentation with multi-media projector.

Course Title:											
Course Code:	ELE3										
Course Outcome:	CO1	analyze design features and limitation of machine	desi	ign							
After completion of course, the students	CO2	understand design parameters for DC Machines.									
should be able to	CO3	understand design parameters for Transformers	ners 								
	CO4	acquire knowledge of design for AC Machines	chines								
	CO5	acquire computer aided design of electrical machines									
media used & ef DC MACHINES	heat dissipation, temperature rise, heating & cooling cycles, rating of machines, cooling used & effect of size and ventilation. DC MACHINES: Output equation, choice of specific loadings, choice of poles and specific poles of conductors, windings, slots field poles, field coils, commutator and machines.										
TDANSEODME	DC: Sta	ndard specifications, output equations, design of co	ro o		Hou						
Cooling tubes, of Temperature risk	calculation calcul	on of circuit parameters, magnetizing current, losse gulations from design data. HINES: Specifications, ratings and dimensions, speed machines, turbo generators, armature conductors.	s ar peci	nd ef	ficie oadii	ncy,					
equations, spec design, stator co Single Phase I design of main	Single Phase Induction Motor: output equations, specific loadings, main dimensions										
	problems.										
Suggested Books:				14	Ηοι	ırs					

- 1. M.G.Say, "Performance and design of ac machines", CBS Publishers.
- 2. S.K. Sen., "Principles of electrical machine design with computer programs", Oxford and IBH publishing co. 1987.
- 3. A.E.Clayton, Hencock, "Performance and design of dc machines", CBS Publishers.
- 4. J.H. Kuhlmann, "Design of electrical operators", John Willey, 1957.
- 5. CG Veinott, "Theory and design of small induction machines", MGH, 1959.
- 6. A Shanmugasundarem, "Electrical machine design databook", PHI

Course Title:	ENE	RGY EFFICIENT MACHINES	L	Т	Р	Cr			
Course Code:	ELE3	32	3	1	0	4			
Course Outcome:	CO1	analyze need of energy efficient machines	nalyze need of energy efficient machines						
After completion of course, the students	students CO2 understand the standards of energy efficient motors								
should be able to	CO3	understand the concept of power factor improver	nent	•					
	CO4	understand the energy conservation and drive system.							
	CO5	acquire knowledge of efficiency labelling							
Introduction: Need for energy efficient machines, energy cost and two-part tariff, energy									

Unit

conservation in industries and farms -a necessity, introduction to energy management and energy audit system. Review of induction motor characteristics.

14 Hours

 $\mathbf{\omega}$

Energy efficient motors: Standard motor efficiency, why more efficient motors? An energy efficient motor, efficiency determination methods, Direct Measurement method, Loss segregation method, Comparison, motor efficiency labeling, energy efficient motor standards. Motor life cycle

S Unit Power factor: The power factor in sinusoidal systems, power factor improvement, power factor with nonlinear loads, Harmonics and the power factor

13 Hours

Induction motors and adjustable drive systems: Energy Conservation, adjustable speed systems, Application of adjustable speed systems to fans, pumps and constant torque loads.

14 Hours

- 1. Andreas John, C. "Energy-efficient electric motors." (1992).
- 2. Thuman Albert, "Introduction to Efficient Electric System Design", The Fairmount Press Prentice Hall.
- 3. Tripathy, S. C. "Electric energy utilization and conservation." (1991).
- 4. Belove, Charles. Handbook of modern electronics and electrical engineering. Ed. Phillip Hopkins. New York: Wiley, 1986.

Course	Title:			BION	MEDICA	AL EN	GI	NE	ERIN	G			L	Т	Р	Cr
Course	Code:		ı	ELE33	3								4	0	0	4
Course After	comple	tion	of	CO1	know al origin o					irculat	ory and	respir	atory	y sys	tem	and
course, should b		stude to	nts	CO2	utilize the concept of various bioelectric signals and electrodes for EEG, EMG and ECG.											
				CO3	know about the various Measurement and Analysis Techniques, X-Rays and computerized tomography and use them in diagnosis of disease.											
				CO4	exercise radio the		ledg	ge o	f Physi	cal Me	dicine a	and Ass	ist D	evic	es aı	nd
learn physiological parameters and components of telemedicine, biotelemetry system and their applications in medical field.							ıe,									
COs		С	01		CO2			CC	D3		CO4			COS	5	
RBTL N	No.	L2	2, L3		L3			L3			L3			L6		
	CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):															
COs					m Outcon	,										
	PO	PO	PO	PC		PO		0	PO	PO	PO	PO	PC		PS O1	PS
CO1	3	2	3	4	2	2		7	8	3	10	11	12 3		<u>01</u>	O2
CO2	3	2	3	3	3	3	-	-	_	2	3	1	3		-	1
CO3	3	3	2	3	2	2	-	-	-	-	3	-	3		-	3
CO4	3	1	1	-	-	1	-	-	-	1	3	1	3		1	3
CO5	3	2	3	3	2	3	-	-	-	2	-	1	3		-	1
Physiological Transducers: Introduction to physiological systems, Pressure transducers, Transducer for body temperature measurement. Pulse sensors, Respiration sensors. Bio-Electric Signals and Electrodes: Origin of bio-electric signals, Recording electrodes, Polarization Skin contact impendence, Electrodes for ECG, EEG, Electrical conductivity of electrode jellies and creams, Microelectrodes.																
	Mass		n4 -	d +	\nah:a!a	Task	mia-		. DI-	od 11-		ato ro	Cor		Hou	
Unit B	gas at tone a meters X-Ray Radio	nalyze audio s. / and graphy	nt, Pul rs Blo meter Ultras /, Ar	Imonai od pH rs, Sp sonic ngiogra	Analysis ry functio , PCO2, eech aud Diagnos aphy, Fl ultrasoni	n analy PO2 m diomete is: Sof uorosc	zers leas ers ft & opy	s, S sure Evo Ha ,)	piro-ment, I ment, I oked re rd X-R (-Ray	eter, Ro Blood o espons ays. X	espirate cell cou e audi -Ray g	ory gas inters, <i>i</i> o-metri	Audio c sy ors fo	lyzer omet stem or di	rs, Bl ter, F ns, C	Pure Oxy- osis.

C

Physical Medicine and Assist Devices: Diathermy-Short wave, ultrasonic and Microwave, Range and area of irritation of each type, Nerve and muscle simulators, Pacemakers external and implantable pacemakers, DC defibrillators, Defibrillator with synchronizer, Implantable Defibrillators.

Radiotherapy: X-Ray therapy, Radionuclide therapy, Units for radiation and radiation dose.

13 Hours

Bio-Telemetry: Physiological parameters adaptable to bio-telemetry, Components of a biotelemetry system, Implantable units, Application of telemetry in patient care.

Introduction to Telemedicine: Telemedicine System's classification, input and output peripherals, Characteristic of available transmission media, introduction to communication system for telemedicine. Medical image format standards, introduction to DICOM and PACs technologies various image compression techniques, lossless and lossy image compression for biomedical application. Telemedicine and law, confidentiality of telemedicine records, security in medical methods.

14 Hours

- 1. Khandpur R. S, "Handbook of Biomedical Instrumentation", TMH Publication
- 2. Pratt Cromwell, "Biomedical Instrumentation", Prentice Hall
- 3. Webster John G, "Medical Instrumentation", Applications & Design, John Wiley
- 4. Geddes, Baker "Principles of Applied Biomedical Instrumentation", John Wiley

Course Title:	INDU	JSTRIAL PROCESS CONTROL	L	Т	Р	Cr		
Course Code:	ELE3	34	4	0	0	4		
Course Outcome:	CO1	analyze and formulate mathematical model of pro	ocess element.					
After completion of course, the students	CO2	understand the concept of process control						
should be able to	CO3	demonstrate the working of various control varieties selection criteria	/alve	s ar	nd t	heir		
	CO4	understand the operation SPC and DDC controllers						
	CO5	acquire knowledge of various intelligent controllers						
Description And Modeling Of Various Industrial Processes: Model Classification,								

Mathematical Models, Physical Models, Analog Models, Estimation of Model Parameters, System Identification, Experimental Nature of Simulation, Steps Involved in Simulation Studies, Validation of Simulation Models, Computer Simulation of Continuous and Discrete Systems

14 Hours

$\mathbf{\omega}$

Process Control: Types and Description of Processes. Blending, batch processes, compressor & chiller controls, distillation control, steam turbine & water treatment controls, boiler controls, reactor controls

14 Hours

0

Conventional Controllers: On-off Controllers, Cascade and Feed forward Controllers, Split Range Controllers, ratio controls, Single loop, multi loop &self tuning controllers, set point control (SPC), discrete digital control (DDC)

13 Hours

Intelligent Controllers: Fuzzy logic control, programmable logic controllers, PC based system, conventional and windows NT based DCS systems, artificial intelligence & neural networks, smart & intelligent transmitters.

14 Hours

- 1. Padmanabhan, "Industrial Process Instrumentation and control", Springer Publishing
- 2. Andrew W.G. & Williams H.B., "Applied Instrumentation in the Process Industries", Gulf Publishing, Houston
- 3. Nolting B.E., "Instrumentation Reference Book", Elsevier India Pvt ,New Delhi
- 4. Liptak B.G., "Instrument Engineer's Handbook (Process Control"), Elsevier India Pvt .New Delhi

Course Title:	COM	IMUNICATION SYSTEMS	L	Т	Р	Cr				
Course Code:	ELE3	335 4 0								
Course Outcome: After completion of	CO1	Gain knowledge about the fundamental concepts of various analog communication systems.								
course, the students should be able to	CO2	Concept of AM, FM and PM transmission and reception.								
	СОЗ	Analyze the data encoding								
	CO4	acquire knowledge Asynchronous and Synchronous tra								
	CO5	acquire knowledge of data link control								
Concepts & Terminology: Data communication: data representation, Analog versus digital signals; Direction of Data flow Analog and digital data transmission data rate limits, Transmission impairments random &nonrandom, Transmission Media- Guided and unguided media, Line configuration, Topology, Categories of networks, Network Architecture – layered protocol TCP/IP and OSI model.										
					Ηοι					

sampling rate, Modulation of Digital data: ASK, FSK, PSK, QAM, Bit/baud comparison Modulation of Analog data: AM, FM and PM

12 Hours

Transmission of digital data: Asynchronous and Synchronous transmission, DTE-DCE interface, Multiplexing Techniques – FDM: Multiplexing and de-multiplexing process, Applications of FDM, Analog hierarchy, TDM: Time slots and frames, Synchronizing and Bit padding, Statistical TDM, Digital signal service, T lines.

15 Hours

Data link Control: Factor Contributing Errors, , Error Control: Stop & wait ARQ, Go back N & Selective ARQ., Error Detection Methods - parity checking, checksum error detection & CRC, Forward Error Correction Method - block parity, Hamming code, Burst Error Correction Method, Flow control: Stop and wait flow control, Sliding window flow control, Data Link protocols - HDLC, CSMA/CD, token bus, token ring & FDDI.

14 Hours

Behrouz A Forouzan, "Data Communications Networking", PHI Publishers

- 2. William Stalling, "Data and Computer Communication", Pearson Education Publishers.
- 3. Prakash C-Gupta, "Data Communication", PHI Publishers.
- 4. A. S. Tanenbaum, "Computer Networks", PHI Publishers.

Course	e Title	e:		J	RELI	ABIL	ITY E	NGIN	EERIN	1G			L	Т	Р	Cr
Course	e Coc	de:		E	CLE4	31	1								0	4
Course	e Out	come		С	:01	gain	the kno	owledg	ge of re	eliability						
After course should	, the		on d audent	of ts C	02	understand the application of maintenance strategies in manufacturing environment.										
				C	:03		be ab em cha			ish mai	ntenanc	e strateg	ies a	acco	ording	to
				C	04		lop ab ince sy				uitable	maintena	nce	strat	egies	s to
				C	:05	analy	analyse statistical methods leading to reliability modelling.									
RBTL No. Mapping: L1(Remembering), L2(Understanding), L3(Applying), L4(Analysing), L5(Evaluating), L6(Creating) COs CO1 CO2 CO3 CO4 CO5																
RBTL	Nο			L1,			L2		L3			L, L3		<u></u>		+
		OM		~: (St	man a (2) / N/	adium((2) / W	(a)(1)	indicate	a strong	th of cor	nalati	٠٣)،		+
		O Mi	ıppınş									e (PSO's)		011).		
COs	P O	P O	P O	P O	P O	PO 6	PO 7	PO 8	PO 9	PO1	PO1	PO1 2	PSC) 1	PSO 2)
	1	2	3	4	5		,	0	9							
CO1	3	-	-	-	-	2	-	1	1	3	2	3	1		1	
CO2	3	2	-	1	2	1	2	1	-	3	2	3	1		1	_
CO3	3	3	2	-	2	3	1	2	1	3	3	3	3		3	_
CO4	3	3	2	2	2	3	1	1	2	3	2	3	3		3	_
CO5	3	3	2	2	2	3	2	-	2	3	1	3	3		3	\perp
Reliability Fundamentals: Introduction, Importance of reliability, Reliability functions, Failure and Failure Modes, causes of failure, Instantaneous failure rate, General reliability Function Component Reliability and Hazard Model: Component reliability from Test data, failure data (Failure density, failure rate, reliability, probability of failure) mean failure rate MTTF,MTBF. Hazard Models (Time-dependent Hazard models, Constant Hazard model, Linear Hazard model, non-linear hazard model																

System Reliability: Reliability evaluation of non-maintained systems, series, parallel, series-parallel, non-series, standby configuration, k out of n configuration, complex system, Markov's Method, Fault tree technique, Event space, path Tracing methods, cut-set and tie set method

13 Hours

Reliability Improvement: Introduction, Improvement of components, redundancy: standby with perfect and imperfect switching. Comparison of component redundancy to system/unit redundancy, mixed redundancy, standby redundancy

Reliability Allocation: Introduction, Redundancy allocation and techniques for reliability allocation

14 Hours

Availability and Maintainability: Concepts of reliability availability maintainability, types of availability, objectives of maintenance, classification and factor affecting maintenance, maintenance levels, Inventory control of spare parts, Preventive maintenance of some electrical appliances.

Projects related to this course should be given to students(in groups) in order to promote team work and ethical values.

15 Hours

- 1. Srinath, L. S. Reliability engineering. New Delhi, Delhi: Affiliated East-West Press, 1991.
- 2. Balagurusamy, E. Reliability engineering. Tata McGraw-Hill Education, 1984.
- 3. Billinton, Roy, and Ronald Norman Allan. Reliability evaluation of engineering systems. New York: Plenum press, 1992.
- 4. Aggarwal, K. K. Reliability engineering. Vol. 3. Springer Science & Business Media, 2012.

Course Title:	Indus	trial Robotics	L	T	P	Cr		
Course Code:			4	0	0	4		
Course Outcome: After completion of	CO1	learn the fundamentals of Robotics, various transmission systems.	ac	tuato	ors	and		
course, the students should be able to	CO2	select an appropriate robot type for a specifi application.	specific manufacturing					
	CO3	and Kinematics in robots.						
	CO4							
	CO5	Study various applications of industrial robot systems						

/lapping:

L1(Remembering), L2(Understanding), L3(Applying), L4(Analysing), L5(Evaluating), L6(Creating)

					-
COs	CO1	CO2	CO3	CO4	CO5
RBTL No.	L1, L2	L2	L3	L4	L4

CO/PO Mapping: (Strong(S) / Medium(M) / Weak(W) indicates strength of correlation):

			Pre	ogram	Outcon	nes (PC)s)/Pro	gram S	pecial (Outcom	ne (PSC) 's)		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PS	PS
	101	102	103	104	103	100	107	100	10)	0	1	2	O1	O2
CO	3	-	1	-	2	2	2	-	3	2	1	2	3	2
1														
CO	3	1	2	2	3	2	1	-	3	2	2	2	3	3
2														
CO	3	3	3	2	2	2	1	-	3	3	-	2	3	3
3														
CO	2	3	3	2	2	2	-	-	3	2	2	2	3	3
4														
CO	3	1	2	2	3	3	1	1	3	2	1	3	3	3
5														

INTRODUCTION: Types of industrial robots, Load handling capacity, general considerations in Robotic material handling, material transfer, machine loading and unloading, CNC machine tool loading, Robot cantered cell.

SELECTION OF ROBOT: Factors influencing the choice of a robot, robot performance testing, economics of robotisation, Impact of robot on industry and society.

12 Hours

 $\mathbf{\omega}$

APPLICATIONS: Application of Robots in continuous arc welding, Spot welding, Spray painting, assembly operation, cleaning, robot for underwater applications.

END EFFECTORS: Gripper force analysis and gripper design for typical applications, design of multiple degrees of freedom, active and passive grippers.

15 Hours

S

Introduction to Automation Plant design softwares.

ROBOTS FOR INSPECTION: Robotic vision systems, image representation, object recognition and categorization, depth measurement, image data compression, visual inspection, software considerations.

14 Hours

MATERIAL HANDLING: concepts of material handling, principles and considerations in material handling systems design, conventional material handling systems - industrial trucks, monorails, rail guided vehicles, conveyor systems, cranes and hoists, advanced material handling systems, automated guided vehicle systems, automated storage and retrieval systems(ASRS), bar code technology, radio frequency identification technology.

Projects related to this course should be given to students(in groups) in order to promote team work and ethical values.

14 Hours

- Klafter, Richard D., Thomas A. Chmielewski, and Michael Negin. Robotic engineering: an integrated approach. 1989.
- 2. Groover, Mikell P. Automation, production systems, and computer-integrated manufacturing. Pearson Education India, 2016.
- 3. Rehg, James A. Introduction to robotics in CIM systems. New Jersey: Prentice Hall, 1997.

Course Title:	DIGI	TAL CONTROL SYSTEMS	L	Т	Р	Cr
Course Code:	ELE4	47	3	1	0	4
Course Outcome: After completion of course, the students	CO1	understand the basic princ modeling of digital control system function and state-space domain.	iples in		tran	and sfer
should be able to	CO2	analyse application of Lap Z-transforms and its correlation for system.	lace digit			and ntrol
	CO3	apply different aspect response like steady state analysi response analysis with system p disturbance rejection, robustness analysis	ole		t rans locat ensit	ion,
	Solve various criteria, and transformation for various systems.			stat Bilir	oility near	
	CO5	learn the design proce- controller for digital control system locus method, Bilinear transformation		sing		for root

RBTL No. Mapping:

L1(Remembering), L2(Understanding), L3(Applying), L4(Analysing), L5(Evaluating), L6(Creating)

COs	CO1	CO2	CO3	CO4	CO5
RBTL No.	L1,L2	L3	L3	L4	L5,L6

CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):

				Prog	ram Outcom	nes (PC	s)/Pro	gram S	pecial	Outco	me (I	PSO's))	
COs	P O 1	P O 2	PO 3	P O 4	PO5	PO 6	PO 7	PO 8	PO 9	PO 10	P O 11	PO 12	PS O1	PSO2
CO1	3	-	1	-	-	-	-	-	1	1	1	2	1	1
CO2	3	2	2	1	2	-	-	1	1	2	1	3	1	1
CO3	2	2	3	1	2	-	ı	-	ı	3	1	2	2	1
CO4	3	3	3	2	2	1	1	-	2	-	2	3	1	1
CO5	3	2	3	-	2	-	1	-	-	1	2	2	2	1

Discrete Representation of Continuous Systems

Basics of Digital Control Systems. Discrete representation of continuous systems. Sample and hold circuit. Mathematical Modelling of sample and hold circuit. Effects of Sampling and Quantization. Choice of sampling frequency. ZOH equivalent.

Discrete System Analysis

Z-Transform and Inverse Z Transform for analyzing discrete time systems. Pulse Transfer function. Pulse transfer function of closed-loop systems. Mapping from s-plane to z plane. Solution of Discrete time systems. Time response of discrete time system.

14 Hours

മ

Stability of Discrete-Time System (4 hours)

Stability analysis by Jury test. Stability analysis using bilinear transformation. Design of digital control system with deadbeat response. Practical issues with deadbeat response design

13 Hours

C

State Space Approach for discrete time systems

State space models of discrete systems, State space analysis. Lyapunov Stability. Controllability, reach-ability, Reconstructibility and observability analysis. Effect of pole-zero cancellation on the controllability & observability.

14 Hours

Design of Digital Control System

Design of Discrete PID Controller, Design of discrete state feedback controller.

Design of set

point tracker. Design of Discrete Observer for LTI System. Design of Discrete compensator.

Discrete output feedback control

Design of discrete output feedback control. Fast output sampling (FOS) and periodic

feedback controller design for discrete-time systems.

Projects related to this course should be given to students(in groups) in order to promote team work and ethical values.

14 Hours

- 1. K. Ogata, "Digital Control Engineering", Prentice Hall, Englewood Cliffs, 1995.
- 2. M. Gopal, "Digital Control Engineering", Wiley Eastern, 1988.
- 3. G. F. Franklin, J. D. Powell and M. L. Workman, "Digital Control of Dynamic Systems", Addison-Wesley, 1998.
 - 4. B.C. Kuo, "Digital Control System", Holt, Rinehart and Winston, 1980.

Course Title:	MICF	ROSENSORS AND SMART DEVICES	L	т	Р	Cr
Course Code:	ELE4	39	4	0	0	4
Course Outcome: After completion of	CO1	Be familiar with the important concepts applicable fabrication.	e to	MEN	/IS, t	heir
course, the students should be able to	CO2	Be fluent with the design, analysis and testing of M	IEM	S.		
	CO3	Apply the knowledge of MEMS for different applica	tion	s.		
	CO4	Gain the knowledge of sensors for bioinstrumenta	tion			
	CO5	identify various fabrication and process of MEMS		m	achii	ning

RBTL No. Mapping:

L1(Remembering), L2(Understanding), L3(Applying), L4(Analysing), L5(Evaluating), L6(Creating)

COs	CO1	CO2	CO3	CO4	CO5
RBTL No.	L1,L2	L3	L2,L3	L4	L5

CO/PO Mapping:(Strong (3) / Medium (2) / Weak (1) indicates strength of correlation)

COs			CO	s Prog	ram Ou	itcomes	s (POs)	/ Progr	am Spe	ecific Ou	itcomes	(PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		
CO1	3															
CO2	3	-	3	3	3	3	1	2	2	3	-	2	3	1		
CO3	3	3	2	3	2	2	2	2	1	3	2	2	3	3		
CO4	3	1	1	-	1	2	1	1	1	3	2	3	1	3		
CO5	3	3	2	2	1	1	-	1	2	3	1	2	2	2		

⋖

Overview: Overview of biosensors and their electrochemistry: Molecular reorganization: enzymes, Antibodies and DNA, Modification of biorecognition molecules for Selectivity and sensitivity Fundamentals of surfaces and interfaces.

Bioinstrumentation: Bioinstrumentation and bioelectronics devices: Principles of potentiometry and potentiometric biosensors, principles of amperometry and amperometric biosensors, Optical Biosensors based on Fiber optics, FETs and Bio-MEMS, Introduction to Chemometrics, biosensor arrays; electronic nose and electronic tongue

13 Hours

S

MEMS Technology: MEMS Technology: Introduction Nanotechnology and MEMS, MEMS

design, and fabrication technology, Lithography, Etching, MEMS material, bulk micromachining, Surface micromachining, Microactuator, electrostatic actuation Micro-fluidics

14 Hours

Applications: MEMS types and their applications: Mechanical MEMS strain and pressure sensors, accelerometers etc., Electromagnetic MEMS, micromotors, wireless and GPS MEMS etc. Magnetic MEMS, all effect sensors, SQUID magnetometers, Optical MEMS, micromachinedfiber optic component, optical sensors, Thermal MEMS, thermo-mechanical and thermo-electrical actuators, Peltier heat pumps.

Projects related to this course should be given to students (in groups) in order to promote team work and ethical values.

14 Hours

- . Soloman, S., "Sensors Handbook", 2 ed, CBS, Publishers, 2010, Print
- 2. Grimes, "Encyclopedia of sensors" CBS Publishers, 2007, Print
- 3. Mukhopadhyay, "Smart sensors and sensing technology", CBS Publishers, 2008, Print
- 4. Saliterman, "fundamentals of Bio-Mems and medical micro devices", CBS Publishers, 2006, Print
- 5. Julian W. Gardner, Vijay Varadan& Osama O. Awadelkarim, "Microsensors, MEMS and Smart Devices", Wiley-Blackwell,
- 6. Donald G. Buerk, "Biosensors: Theory and Applications", CRC, Print
- 7. Xueji Zhang, HuangxianJu& Joseph Wang, "Electrochemical Sensors, Biosensors and their Biomedical Applications", Academic Press, Print

Course Title:	DIGI	TAL SIGNAL PROCESSING	L	Т	Р	Cr						
Course Code:	ELE4	37	3	1	0	4						
Course Outcome: After completion of course, the students	CO1	Understand the analytical tools such as Foundary Discrete Fourier transforms, Fast Fourier Transforms required for digital signal processing.										
should be able to	CO2	get familiarized with various structures of IIR and F	IR s	yste	ms.							
	CO3	Design and realize various digital filters for digital s	signa	al pro	ces	sing						
	CO4	Understand the applications of DSP in speech spectrum analysis.	pro	cess	ing	and						
	CO5	Analyze various signal processing techniques										
CO5 Analyze various signal processing techniques												

RBTL No. Mapping:

L1(Remembering), L2(Understanding), L3(Applying), L4(Analysing), L5(Evaluating), L6(Creating)

COs	CO1	CO2	CO3	CO4	CO5
RBTL No.	L1,L2	L2	L3	L4	L4,L5

CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):

			Pr	ogram	Outcon	nes (PC	s)/Prog	gram S _l	pecial (Outcom	e (PSC)'s)		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PS	PSO
	101	102	103	104	103	100	107	100	10)	0	1	2	O1	2
CO	3	1			2				1	2		3	2	1
1	3	1	-	_	2	_	-	_	1	2	-	3	2	1
CO	3	3	2	2	3				3	2	1	3	1	2
2	3	3	4	2	י	-	1	-	3	4	1	3	1	2
CO	3	2	3	2	3	1	1	1	3	2	2	3	3	2
3	3	2	3	2	3	1	1	1	3	2	2	3	,	2
CO	3	2	3		1	1	1		3	1	2	3	2	1
4	3	2	3	-	1	1	1	_	3	1	2	3	4	1
CO	3	3	3	1	2				3	3	2	2	2	1
5)		3	1	2				J	3	2	2		1

Review of discrete time signals and systems

Overview of signals and systems, DFT-FFT using DIT and DIF algorithms, Inverse DFT-FFT using DIT and DIF algorithms, Applications, Circular Convolution.

Design and implementation of IIR filters

Design of analog filters using Butterworth and Chebyshev approximations, IIR digital filter design from analog filter using impulse invariance technique and bilinear transformations.

14 Hours

$\mathbf{\omega}$

Design and implementation of FIR filters

Linear phase response, Design techniques for FIR filters, Fourier series method and frequency sampling method-Design of Linear phase FIR filters using windows: rectangular, Henning and Hamming windows.

14 Hours

C

Finite word length effects in digital filters

Fixed point arithmetic, effect of quantization of the input data due to Finite word length. Product round off, need for scaling, Zero input limit cycle oscillations -Limit cycle oscillations due to overflow of adders, Table lookup implementation to avoid multiplications.

13 Hours

Processor Fundamentals

Features of DSP processors – DSP processor packaging (Embodiments) – Fixed point Vs floating point DSP processor data paths – Memory architecture of a DSP processor (Von Neumann - Harvard) - Addressing modes - pipelining -TMS320 family of DSPs (architecture of C5x).

Projects related to this course should be given to students (in groups) in order to promote team work and ethical values.

14 Hours

- 1. John G. Proakis and Dimitris C. Manolakis, "Digital Signal Processing Principles, Algorithms and Applications", Pearson Education, Fourth edition, 2007.
- 2. Venkataramani.B, Bhaskar.M, "Digital Signal Processors, Architecture, Programming and Application", Tata McGraw Hill, New Delhi, 2003.
- 3. SanjitMitra, "Digital Signal Processing, A Computer based approach", Tata McGraw Hill, New Delhi, 2011.

Course	Title	:		OPTI	MAL	CONT	'ROL	•					L	Т	Р	C r
Course	Cod	e:		ELE4	48								4	0	0	4
Course	Outo	ome:		CO1				eters of method		l contro	ol syste	em lik	e la	gran	ge's	
After course,		letion stude	of ents	CO2	analy	se the	use	of maxin	na and		a funct	ions i	n de	eterm	nining]
should			_	CO3	const		otimal	control			s using	Ham	niltoi	n Jac	obi a	ind
				CO4				nality pri	nciple	over tir	ne vari	iant s	yste	ms.		
				CO5				control p								
RBTL N	o. Ma	pping:														
L1(Rem	o. Mapping: nembering), L2(Understanding), L3(Applying), L4(Analysing), L5(Evaluating), L6(Creating) CO1 CO2 CO3 CO4 CO5															
COs	CO1 CO2 CO3 CO4															
RBTL N	RBTL No. L1, L2 L4 L5 L4											L4				
CO/PO	o. L1, L2 L4 L5 L4 L5 Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation															
	Prog	gram O	utcon	nes (PC	s)/Pro	gram S	Specia	ıl Outco	me (PS	O's)						
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	F	PSO L	PSC)2
CO1	3	3	3	2	2	-	-	-	1	2	2	2		3	2	2
CO2	3	3	2	3	3	3	-	-	2	-	3	-		3		2
CO3	3	2	3	2	2	2	-	-	3	3	2	2		3	2	2
CO4	2	2	2	2	3	3	-	-	2	-	3	-		3	2	2
CO5	3	3	3	2	2	2	-	-	3	3	-	2		3	2	2
Unit A	Introduction and Parametric Optimization: Introduction to optimal control problems, Classification of optimal control problems, performance indices for optimal control and their selection, Dynamic optimization using calculus of variations: Lagrange multiplier, Euler Lagrange's equation for different conditions, Transversality conditions, Dynamic optimization with equality and inequality constraints															

Pontryegans Max/min Principle: Optimization using Pontryegans maximum (minimum) principles with special emphasis on Bang-Bang type system Dynamic Programming in Continuous Time: Developments of Hamilton Jacobi equation, Matrix Riccati equation, Optimal control based on quadratic performance indices, Linear regulator and servomechanism problem

14 Hours

C

Dynamic programming in Discrete System: Dynamic programming multi stage decision processes in continuous time. Principle of causality, Invariant inbedding& optimality

13 Hours

Unit

Iterative Method of Optimization: Optimization using gradient methods and interactive techniques (steepest descent), Newton Raphson and Fletcher Powell. Introduction to multivariable system and decoupling, Introduction to Optimal Filters (Kalman Filter).

14 Hours

- 1. M Gopal, "Modern Control System Theory", Wiley Eastern.
- 2. Richard C Drof& R H Bishop, "Modern Control Systems 8th Ed", Addision Wesley.
- 3. Andrew P Sage & C C White-III, "Optimum Systems COntrol", PHI.
- 4. B D O Anderson & B Moree, "Optimum System Control", PHI.

Course	Title:			Fund	amen	tal of	Virtu	al Ins	trume	ntatio	n		L	Т	Р	Cr
Course	Code			ELE4	36								4	0	0	4
Course After	Outco		of	CO1		ise bas uantiza		f digital	image	genera	ation, p	roces	ssing	j, sai	mplir	ıg
course, should b	the	stude	ante	CO2	know techn		imag	e transf	orms te	echniqu	ues and	d ima	ge e	nha	ncem	nent
				CO3				ant in ormation			, spec	tral	dens	sity	funct	ion,
				CO4	analy		age r	estorat	ion inc	luding	mode	els, fi	Iters	an	d di	gital
				CO5				of image chnique		entatio	n, ima	ge da	ita c	omp	ressi	on
RBTL No	o. Map	ping:														
L1(Rem	ember	ing), L2	2(Unde	erstand	ling), L	3(Apply	ying),	L4(Ana	lysing),	L5(Eva	aluatin	g), L6	(Cre	atin	g)	
Cos		со	1		CO2		(03		CO4			CO5			
RBTL No).	L3			L2]	L3		L4]	L6			
CO/PO I	Mappii	ng: (Sti	rong(3)) / Med	dium(2)	/ Wea	ak(1) i	ndicate	s stren	gth of	correla	ation)	:			
	Prog	gram C	utcom	nes (PO	s)/Pro	gram S	pecia	l Outco	me (PS	O's)						
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	P 1	SO	PSC)2
CO1	3	-	2	-	2	-	-	-	1	2	-	2		3	1	2
CO2	3	3	2	2	3	1	-	-	2	3	2	2		3		3
CO3	2	-	2	3	2	-	-	1	2	3	2	2		3	3	3
CO4	2	2	2	-	3	2	-	-	2	2	3	3		3	3	3
CO5	2	2	3	3	3	1	-	-	2	3	3	3		3	3	3
Unit A	diffe instr	2 2 3 3 3 3 3 3 3 1 2 3 3 3 3 3 3 3 3 3 Introduction to Virtual Instrumentation: Historical perspective, Classification of different instruments / instrumentation system, Definition and architecture of virtual instrumentation system, salient features and application area of virtual instrumentation.														
														14	Hou	rs

Data Flow Programming Techniques: Graphical programming in data flow, comparison with conventional programming, popular data flow and VI software packages. Building a VI front panel and block diagram, sub VI, for and while loops, case and sequence structure, formula nodes, local and global, string and file I/O, array and clusters, charts and graphs, attributes nodes.

13 Hours

Data Acquisition Basics: ADC, DAC, D/O, counters and timer, PC hardware structure, timing, interrupts, DMA, software and hardware installation, Configuring data acquisition hardware using the drives in application software, use of DAQ library functions for different analog and digital input/output operations. Common Instrument Interfaces: Current loop, RS 232, RS485, GBIP. Use of library functions to communicate with different instruments.

13 Hours

Use of Measurement Analysis Tools: Measurement of Max, Min, Peak-Peak voltage, Mathematical tools, time period of a signal, power spectrum and logging Fourier transform, Correlation methods, windowing and filtering.

Building a web-based virtual instrument: Networking basics for office and industry application.

14 Hours

- 1. Gupta S., "Virtual Instrumentation Using Labview", TMH publication
- 2. Gupta S. & Gupta J., "PC Interfacing for data acquisition", SA publication
- 3. Wells Lisa K, Travis Jeffry, "LabVIEW for everyone", PHI publication
- 4. Johnson Gary W, "Lab view Graphical Programming", McGraw Hill

Course	Title:			COM	PUTA	TION	NAL 1	ELEC	TRON	MAGN	NETI(CS	L	Т	Р	Cr
Course	Code:]	ELE4	49								3	1	0	4
Course After	Outco		of (CO1		stand to		sic con	cepts o	of Elect	trostati	cs ar	nd			
course, should b	the	stude	nte	CO2		stand etic fiel		us co	mputat	ional	technic	ques	for	СО	mpu	ting
			(CO3				itial an oblems		-differe	ntial te	echn	ique	s to	vari	ous
			(CO4	analys	se the a	analyti	cal tec	hnique	s for va	arious i	rregi	ular (geom	netrie	es.
			(CO5				edge of transie			d plots	, stru	uctur	al		
RBTL No	o. Map	ping:														
L1(Rem	·		2(Unde	erstand	ling), Li	3(Apply	ying),	L4(Anal	lysing),	L5(Eva	aluatin	g), L6	5(Cre	atin	g)	
COs		СО	1		CO2		C	:03		CO4			CO5			
RBTL No).	L1	, L2		L4		L	.5		L4			L4			
CO/PO	Mappii	ng: (Sti	ong(3)	/ Med	dium(2)) / Wea	ak(1) i	ndicate	s stren	gth of	correla	ation):			
	Prog	gram C	utcom	es (PC	s)/Pro	gram S	pecial	Outco	me (PS	O's)						
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	F 1	SO.	PSC)2
CO1	3	3	3	2	2	-	-	-	1	2	2	2		3		2
CO2	3	3	2	3	3	3	-	1	2	-	3	-		3		2
CO3	3	2	3	2	2	2	-	-	3	3	2	2		3		2
CO4	2	2	2	2	3	3	-	1	2	-	3	-		3		2
CO5	3	3	3	2	2	2	-	-	3	3	-	2		3		2
Unit A	Conv Revi of He	ew ofl elmho	nal des basic f ltz equ	undan ation	nethodo nentals , energ	of El	ectros sform	statics	and El	ectron	nagnet	ics.	Dev	elop	mer	ıt

Analytical Methods

Analytical methods of solving field equations, method of separation of variables, Roth's

method, integral methods- Green's function, method of images.

Finite Difference Method (FDM)

Finite Difference schemes, treatment of irregular boundaries, accuracy and stability of FD solutions, Finite-Difference Time-Domain (FDTD) method- Uniqueness and convergence

14 Hours

Finite Element Method (FEM)

Overview of FEM, Variational and Galerkin Methods, shape functions, lower and higher order elements, vector elements, 2D and 3D finite elements, efficient finite element computations.

Special Topics

{Background of experimental methods-electrolytic tank, R-C network solution, Field plotting

(graphical method)}, hybrid methods, coupled circuit - field computations, electromagnetic -

thermal and electromagnetic - structural coupled computations, solution of equations, method

of moments, Poisson's fields.

13 Hours

Applications

Low-frequency electrical devices, static / time-harmonic / transient problems in transformers, rotating machines, actuators. CAD packages.

14 Hours

- 1. P. P. Silvester and R. L. Ferrari "Finite Element for Electrical Engineers", Cambridge University press, 1996.
- 2. M. N. O. Sadiku, "Numerical Techniques in Electromagnetics", CRC press, 2001.

Course 7	Γitle:			ELEC	CTRIC	CAL E	ENG	INEER	ING I	MATE	ERIAI	LS	L	Т	Р	Cr
Course (Code:]	ELE4	50								4	0	0	4
Course (Outco	me:	(CO1	acquir	e an in	n-dep	th know	rledge a	about t	he cor	nduc	ting	mate	erials	;
After course, should be	omple the able	stude	of nts	CO2	acquir mater		know	rledge o	f prop	erties	of die	electi	ric a	ınd i	nsula	ator
			(CO3	under device		the	selectio	n of I	magne	tic ma	ateria	als 1	for e	electi	rical
			(CO4	•	e the		wledge ent	of ma	terials	for sp	oecia	ıl ap	plica	tion	s in
			(CO5	to und	derstan	nd the	e proce:	sses us	ed in P	lano te	echn	olog	у		
RBTL No.	Марр	oing:														
L1(Reme	L1(Remembering), L2(Understanding), L3(Applying), L4(Analysing), L5(Evaluating), L6(Cre													eatin	g)	
COs		со	1		CO2			CO3		CO4			COS	5		
RBTL No.		L1,	, L4		L2,L	5		L1, L4		L3			L2,	L5		
CO/PO M	1appin	g: (Str	ong(3)) / Med	dium(2)	/ Wea	ak(1)	indicate	s stren	gth of	correla	ation	ı):			
	Prog	ram O	utcom	nes (PO	s)/Pro	gram S	pecia	al Outco	me (PS	O's)						
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12		PSO 1	PSO) 2
CO1	3	3	3	2	2	-	-	-	1	2	2	2		2		2
CO2	3	3	2	3	3	3	-	-	2	-	3	-		2		2
CO3	3	2	3	2	2	2	-	-	3	3	2	2		1		2
CO4	2	2	2	2	3	3	3	-	2	-	3	-		1		2
CO5	3	3	3	2	2	2	-	-	3	3	-	2		2		2
t /	Conductors, Properties of conductors, ACSR, High resistivity materials and their properties, Alloys, Soldering and brazing materials, superconductivity, superconductor materials and their applications.															

Insulators, classifications of insulators, dialectical materials, glass and ceramics refractory materials and their uses, optical fibers, laser and optoelectronics materials, semiconductor materials, properties of semiconductor materials thermosetting and thermoplastic materials.

13 Hours

0

Classification of material, Dia, Para, and Ferromagnetic materials-curie law and Curie Weiss law (qualitative study). Ferromagnetism-Qualitative study of domain theory – Hysteresis phenomena. Hard and soft magnetic material and their applications. Ferrites, Structure and property.

14 Hours

Processes used in Plano technology e.g. Lapping, polishing, cleaning, masking, photolithography, diffusion, oxidation and metallization, welding wire bonding, packaging and encapsulation, Heating induction and dielectric, Electron beam welding and cutting annealing, cold &Hot rolling.

14 Hours

- 1. Kasap S.O, "Principles of Electrical Engg. Material and Devices" MGH.
- 2. Mahajan, "Principles of Growth and processing of semiconductors" MGH.
- 3. Dhir, "Electronics components and materials and Principles Manufacturing & Maintenance"
- 4. Addision, "Electronics Engg. Material Devices" TMH.
- 5. Ruska N Scot, "Microelectronics processing and introduction to the manufacturer of integrated circuits", MGH.
- 6. Seth & Gupta, "A course in Electrical Engg. Material" DhanpatRai& Sons.
- 7. Dekker, "Electrical Engg. Materials" PHI.

Course	Title:			ADV	ANCE	D INS	STR	UMEN	TATI	ON			L	Т	Р	Cr
Course	Code:		1	ELE4	68								4	0	0	4
Course After	Outco		of (CO1			-	th knowl g instrun	-	bout th	ne wav	e an	alys	ers a	nd	
course, should b	the	stude	ntc	CO2				dge of p					inte	lliger	nt	
			(CO3				selection plication		ria of	optical	fibi	re s	enso	rs, t	heir
			(CO4	recogi intens	nize t ities.	he i	mportar	nce of	sour	nd fre	que	ncie	s ar	nd I	light
			(CO5	acquir	e the k	nowl	edge of	tactile	sensor	s					
RBTL No	•		2(Unde	erstand	ling), Li	3(Apply	ying),	L4(Anal	ysing),	L5(Eva	ıluatin	g), L	6(Cr	eatin	g)	
COs		со	1		CO2		(CO3		CO4			CO	5		
RBTL No		L1	, L2		L4			L5		L4			L4			
CO/PO N	/lappir	ng: (Str	ong(3)	/ Me	dium(2)) / Wea	ak(1)	indicate	s stren	gth of	correla	ation	ı):			
	Prog	gram O	utcom	es (PC	s)/Pro	gram S	pecia	l Outco	me (PS	O's)						
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12		PSO 1	PSC)2
CO1	3	3	3	2	2	-	-	-	1	2	2	2		3		2
CO2	3	3	2	3	3	3	-	1	2	-	3	-		3		2
CO3	3	2	3	2	2	2	-	-	3	3	2	2		3		2
CO4	2	2	2	2	3	3	-	1	2	-	3	-		3		2
CO5	3	3	3	2	2	2	-	-	3	3	-	2		3		2
Unit A	oscill modu	loscop ılatior	e, san analy	npling zer, s	oscillo pectru	oscope m anal	e ,DS lyzer	dvance O wave , waver neters.	e analy	zer, d	istorti	on a	naly	zer, freq	-	су

Advanced Sensors: Current and voltage sensors, intelligent pressure transducer, turbidity measurement, microwave sensor, ceramic sensor as gas sensor.

Vision Sensors: overview, illumination consideration, vision sensors generalties, 2D sensor, 3D sensor, interfacing of vision sensors.

13 Hours

Optical Fibre Sensor: Introduction, extrinsix and dynamic fibre optic sensor, elementary principles, the design of optical fibre sensor, development of optical fibre sensor, phase modulated optical fibre sensor, frequency modulation in optical sensor, polarization modulation in fiber sensors, distributed optical fiber sensing DOFS, distributed micro bend strains sensor, distributed optical fibre temperature sensor, using the optical kerr effect, distributed optical fibre sensor for chemical species, fiber optic sensor for air pollution, optical fiber pressure sensor, optical fiber pressure sensor, optical fiber temperature sensor, optical fiber sensor for humidity

14 Hours

Ultrasonic Instrumentation: Sirens, whistles, the wretch whistles, liquid ultrasonic, generators, solid transducers, piezoelectric transducers, magneto strictive transducers, the production of very light intensity, depleted layer transducer, applications of ultrasonic processing, uses of ultrasonic in measurement and control, flow detection, application of ultrasonic to boilers.

Tactile Sensors: Overview, touch sensing, tactile sensing, interfacing of tactile sensors.

14 Hours

Suggested Books:

Allan Morris, "Principles of measurement and instrumentation", PHI.

- 2. J P Bartley, "Principles of measurement system", Longman London
- 3. SabrieSoloman, "Sensors and control system in manufacturing", McGraw Hill.
- 4. HKP Newbert, "Instrument transducer", Clarendon.
- 5. Cooper and Helfrick, "modern electronic instrumentation and measurement techniques", PHI.

Course Title:	Elect	rical and Hybrid Vehicles	L	Т	Р	Cr
Course Code:	ELE4	59	4	0	0	4
Course Outcome:	CO1	Understanding Conventional Vehicles:				
After completion of course, the students should be able to	CO2	Configuration and control of DC/AC Motor d	rive	S		
Should be able to	CO3	Energy Storage Requirements in Hybrid Vehicles	ar	nd :	Elec	tric
	CO4	Energy management strategies used in hybridiles	orida	ınd	elec	tric
Introduction	CO5	Case studies				

Conventional Vehicles: Basics of vehicle performance, vehicle power source characterization, transmission characteristics, mathematical models to describe vehicle performance. Introduction to Hybrid Electric Vehicles: History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies. Hybrid Electric Drivetrains: Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis.

14 Hours

Electric Trains

Electric Drive-trains: Basic concept of electric traction, introduction to various electric drivetrain topologies, power flow control in electric drive-train topologies, fuel efficiency analysis. Electric Propulsion unit: Introduction to electric components used in hybrid and electric vehicles, Configuration and control of DC Motor drives, Configuration and control of Induction Motor drives, configuration and control of Permanent Magnet Motor drives, Configuration and control of Switch Reluctance Motor drives, drive system efficiency.

15 Hours

Energy Storage

Energy Storage: Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Battery-based energy storage and its analysis, Fuel Cell-based energy storage and its analysis, Super Capacitor based energy storage and its analysis, Flywheel-based energy storage and its analysis, Hybridization of different energy storage devices. Sizing the drive system: Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems

Energy Management Strategies

Energy Management Strategies: Introduction to energy management strategies used in hybridand electric vehicles, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy management strategies.

Case Studies: Design of a Hybrid Electric Vehicle (HEV), Design of a Battery ElectricVehicle (BEV).

14 Hours

- . . C. Mi, M. A. Masrur and D. W. Gao, "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", John Wiley & Sons, 2011.
- 2. S. Onori, L. Serrao and G. Rizzoni, "Hybrid Electric Vehicles: Energy Management Strategies", Springer, 2015.
- 3. M. Ehsani, Y. Gao, S. E. Gay and A. Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design", CRC Press, 2004.
- 4. T. Denton, "Electric and Hybrid Vehicles", Routledge, 2016.

Course Title:	NEU	RAL NETWORKS AND FUZZY LOGICS	L	Т	Р	Cr	
Course Code:	ELE4	60	4	0	0	4	
Course Outcome:	CO1	Introductory knowledge of Expert system					
After completion of course, the students	CO2	Expert systems, fuzzy sets and control theory					
should be able to	CO3	Introduction, Reasoning models,					
	CO4	Rule Base Construction By Self- Learning					
	CO5	Fuzzy Controller With Self Learning Teach	er:				
Introduction:	Expert	systems, fuzzy sets and control theory; represen	tatio	on.			

reasoning and acquisition; inference engines and functions approximator, modelbased and training based fuzzy control; neural networks and fuzzy systems; fuzzyneural control: ideas & para-diagrams

14 Hours

 $\mathbf{\omega}$

Approximate Reasoning Approach: Introduction, Reasoning models, rule aggregation and operator selection, reasoning with uncertain data and rules, architecture of multivariable fuzzy control

13 Hours

C

Rule Base Construction By Self- Learning: Description of system structure, proposed learning algorithm, convergence analysis, error and derivative correction, fuzzy control algorithm, extracting rules from recorded data

14 Hours

Fuzzy Controller With Self Learning Teacher: Formulation of the problem, solution using neural networks (BNN network, isomorphic mapping of functionality), BNN based fuzzy controller, learning & rules extracting, hybrid neural network, system structure, dynamical self organizing, adaptive mechanisms, simplified fuzzy control algorithms, representation and reasoning by CPN, self construction of rule base, description of the CMAC and RBF, connecting the CMAC and RBF to the SFCA, self construction of the fuzzified network based controller

15 Hours

- . J.M.Zurada, "Introduction to Neural Systems", Jaico Publishers.
- 2. Dr. V.B.Rao and Sh. H.V. Rao, "Neural Networks and Fuzzy Logic", BPB Publications.
- 3. JunhongNie and DeretLinkens, "Fuzzy- Neural Control: Principles, Algorithms and Applications", PHI Publications.
- 4. Rao & Rao, "C++ Neural Network and fuzzy logic", M&T books.

Course	Title:		CTRICAL ENERGY AUDITING AND EGULATION	L	Т	Р	Cr
Course	Code:	ELE4	08	4	0	0	4
After	Outcome:	CO1	Types of energy audit, Energy management (a understanding energy costs	udit	ap	proa	ich-
course, should b	the students be able to	CO2	Need and advantage of de regulation				
		CO3	Power wheeling in Multi area system				
		CO4	Reactive power management in some deregula markets	ited	elec	nergy , Fuel and 14 Hours electric orld, Role of	ity
		CO5	Reliability Analysis				
Unit A	audit, Energy n Benchmarking, Maximizing sy	nanager Energy stem ef	& Audit: Definition, Energy audit-need, Types ment (audit) approach-understanding energy cosy performance, Matching energy use to requirent ficiencies, Optimizing the input energy requiremergy audit instruments	sts, nent			and
Unit B	utilities, Backg benefits from a the independen markets, ISO in	round t compe t systen n Bilate	action, Reconfiguring Power systems, unbundling of deregulation and the current situation around a titive electricity market after effects of deregular operator, Operational planning activities of IS ral markets, Operational planning activities of a pateral markets, market participation issues, compared to the properties of the properties of the participation issues, compared to the properties of the prop	the v tion O: I GE	worl , Ro SO NC	d, ole o in P	f
						Ηοι	
Unit C	management in deregulation, G	deregu Seneral variou	smission open access, pricing of power transaction and congestion management description of some ancillary services, ancillary s countries, reactive power management in som	t in ser	vice regi	s ılate	ed
	Dalia Lati	1	mtammatian anitanian atautani			Hou	ırs
Unit D	models, Calcul parallel connec distribution reli	ation m tions, n iability,	nterruption criterion, stochastic components, co ethods, Network model: stochastic networks, se ninimum cut sets, reliability cost, Generation, tr Reliability and deregulation: conflict, reliability cliability, regulation of the market	ries ansr	and niss	l ion :	and
					14	Ηοι	ırs
Sugges	ted Books:						

- . K. Bhattacharya, MHT Bollen and J.C Doolder, "Operation of Restructured Power Systems", Kluwer Academic Publishers, USA, 2001.
- 2. Lei Lee Lai, "Power System restructuring and deregulation", John Wiley and Sons, UK. 2001.
- 3. Fred I Denny and David E. Dismukes "Power System Operations and Electricity Markets", CRC Press, LLC, 2002.

Course Title:	POW	ER QUALITY AND FACTS	L	Т	Р	Cr
Course Code:	ELE4	61	4	0	0	4
Course Outcome:	CO1	Transmission Lines and Series/Shunt React Compensation	ive	Pow	er	
After completion of course, the students should be able to	CO2	Thyristor-based Flexible AC Transmission (FACTS	on (Con	trol	lers
	СОЗ	Voltage Source Converter based (FACTS) of	cont	roll	ers	
	CO4	Application of FACTS				
	CO5	Power Quality Problems in Distribution Sys	sten	ıs		
Transmission	Lines	and Series/Shunt Reactive Power Compensati	ion			

ansmission Lines and Series/Shunt Reactive Power Compensation

Basics of AC Transmission. Analysis of uncompensated AC transmission lines. Passive Reactive Power Compensation. Shunt and series compensation at the midpoint of an AC line. Comparison of Series and Shunt Compensation.

Thyristor-based Flexible AC Transmission Controllers (FACTS)

Description and Characteristics of Thyristor-based FACTS devices: Static VAR Compensator

(SVC), Thyristor Controlled Series Capacitor (TCSC), Thyristor Controlled Braking Resistor and Single Pole Single Throw (SPST) Switch. Configurations/Modes of Operation, Harmonics and control of SVC and TCSC. Fault Current Limiter.

14 Hours

മ

Voltage Source Converter based (FACTS) controllers

Voltage Source Converters (VSC): Six Pulse VSC, Multi-pulse and Multi-level Converters, Pulse-Width Modulation for VSCs. Selective Harmonic Elimination, Sinusoidal PWM and Space Vector Modulation. STATCOM: Principle of Operation, Reactive Power Control: Type I and Type II controllers, Static Synchronous Series Compensator (SSSC) and Unified Power Flow Controller (UPFC): Principle of Operation and Control. Working principle of Interphase Power Flow Controller. Other Devices: GTO Controlled Series Compensator. Fault Current Limiter

13 Hours

Application of FACTS

Application of FACTS devices for power-flow control and stability improvement. Simulation example of power swing damping in a single-machine infinite bus system using a TCSC. Simulation example of voltage regulation of transmission mid-point voltage using a STATCOM.

Power Quality Problems in Distribution Systems

Power Quality problems in distribution systems: Transient and Steady-state variations in voltage and frequency. Unbalance, Sags, Swells, Interruptions, Waveform Distortions: harmonics, noise, notching, dc-offsets, fluctuations. Flicker and its measurement. Tolerance

of Equipment: CBEMA curve.

DSTATCOM

Reactive Power Compensation, Harmonics and Unbalance mitigation in Distribution Systems using DSTATCOM and Shunt Active Filters. Synchronous Reference Frame Extraction of Reference Currents. Current Control Techniques in for DSTATCOM.

Dynamic Voltage Restorer and Unified Power Quality Conditioner

Voltage Sag/Swell mitigation: Dynamic Voltage Restorer – Working Principle and Control Strategies. Series Active Filtering. Unified Power Quality Conditioner (UPQC): Working Principle. Capabilities and Control Strategies.

14 Hours

- . N. G. Hingorani and L. Gyugyi, "Understanding FACTS: Concepts and Technology of FACTS Systems", Wiley-IEEE Press, 1999.
- 2. K. R. Padiyar, "FACTS Controllers in Power Transmission and Distribution", New Age International (P) Ltd. 2007.
- 3. T. J. E. Miller, "Reactive Power Control in Electric Systems", John Wiley and Sons, New York, 1983.
- 4. R. C. Dugan, "Electrical Power Systems Quality", McGraw Hill Education, 2012.
- 5. G. T. Heydt, "Electric Power Quality", Stars in a Circle Publications, 1991

Course	Title:	OPT	IMIZATION TECHNIQUES	L	Т	Р	Cr				
Course	Code:	ELE4	35	4	0	0	4				
Course Outcome: After completion of course, the students		CO1	Introduction of optimization and constraints								
		CO2 Linear Programming approach									
should	be able to	CO3 Constrained Optimization Techniques:									
		CO4	CO4 Unconstrained Multivariable Optimization Techniques:								
		CO5	Multiobjective Optimization Techniques								
			nization: Statement of an optimization problem,								
Unit A	of optimization optimization. Classical option optimization	on pro i mizati with i	nization: Statement of an optimization problem, oblems, Optimization techniques, Engg. apon techniques: Single variable optimization, no constraints, Multivariable optimization value optimization with inequality constraints.	plio Mi	catio ultiv	ons varia	of able				
Unit B Unit A	of optimization optimization. Classical optimization optimization constraints, Mu Linear progra Simplex methors implex methors are progration.	mization production pr	on techniques: Single variable optimization, no constraints, Multivariable optimization value optimization with inequality constraints. g: Standard form of linear programming, Graphyophase simplex method, Computer implement	Miwith	ultiv h e 14 al s	varia equa Hou olut of	of able ality Irs ion, the				

search, Fibonacci search, Golden Section, Cubic interpolation method, Direct root, Newton Raphson Method

Unconstrained Multivariable Optimization Techniques: Random search method, Steepest descent method, Conjugate gradient method, Variable metric method. Newton Raphson Method, Evolutionary search, Hooke-Jeeves Method, Simplex search Method

Constrained Optimization Techniques: Interior Penalty function method, Exterior penalty function method, Method of Multipliers, KKT Conditions

14 Hours

Further topics in optimization: Critical path method (CPM), Program evaluation and review technique (PERT). Multiobjective Optimization Techniques, Weighting method, ε-constraint method. Simulated annealing method

Suggested Books:

Rao, S.S., "Optimization: Theory and Application", Wiley Eastern Press, 2nd edition 1984.

- 2. Deb Kalyanmoy, "Optimisation for Engineering Design-Algorithms and Examples"., Prentice Hall India-1998
- 3. Taha, H.A., "Operations Research An Introduction", Prentice Hall of India, 2003.
- 4. Fox, R.L., "Optimization methods for Engineering Design", Addition Welsey, 1971.
- 5. Ravindran A., Ragsdell K.M. and Reklaitis G.V., "Engineering Optimization: Methods And applications", Wiley, 2008
- 6. Godfrey C. Onwubolu, B. V. Babu, "New optimization techniques in engineering", Springer, 2004

Course Title:	POW CON	L	Т	Р	Cr								
Course Code:	ELE4	63	3	1	0	4							
Course Outcome: After completion of course, the students should be able to	CO1	Choose the fundamental dynamic behaviour and controls of power systems to perform basic stability analysis.											
	CO2	Comprehend concepts in modelling and simulating the dynamic phenomena of power systems Interpret results of system stability studies											
	CO3	analyse theory and practice of modelling main power sys components.											
	CO4	explain the connection between frequency and active power a between voltage and reactive power											
	CO5	analyse the tools for enhancing system stability.											

RBTL No. Mapping:

L1(Remembering), L2(Understanding), L3(Applying), L4(Analysing), L5(Evaluating), L6(Creating)

COs	Os CO1 CO2		CO3	CO4	CO5
RBTL No.	L1,L2	L2,L3	L4	L5	L4,L5

CO/PO Mapping: (Strong(3) / Medium(2) / Weak(1) indicates strength of correlation):

	Corr o mapping. (Strong(c) / metaram(2) / wear(1) materials strongth of confederation.														
		Program Outcomes (POs)/Program Special Outcome (PSO's)													
COs	DO1	O1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PS	PSO	
PO	FOI		103	FU4	POS	FO0	107	100		0	1	2	O1	2	
CO 1	3	1	1	1	1	1	2	1	1	2	ı	3	2	1	
CO	3	2	2	2	3	_	_	1	3	2	2	3	3	2	
2	3				3			1	3			,	3		
CO	3	2	2	_	3	1	1	1	3	2	1	3	3	2	
3	3					1	•	1			•				
CO	3	2	1	1	2	2.	3	3	3	2	2.	3	2	1	
4	3		1	1		2	3	3	3			3		1	
CO	3	3	3	2	3	1	1	2	3	3	1	2	2	1	
5															

Introduction to Power System Operations

Introduction to power system stability. Power System Operations and Control. Stability problems in Power System. Impact on Power System Operations and control.

Analysis of Linear Dynamical System and Numerical Methods

Analysis of dynamical System, Concept of Equilibrium, Small and Large Disturbance Stability. Modal Analysis of Linear System. Analysis using Numerical Integration Techniques. Issues in Modeling: Slow and Fast Transients, Stiff System.

14 Hours

Modeling of Synchronous Machines and Associated Controllers

Modeling of synchronous machine: Physical Characteristics. Rotor position dependent model. D-Q Transformation. Model with Standard Parameters. Steady State Analysis of Synchronous Machine. Short Circuit Transient Analysis of a Synchronous Machine. Synchronization of Synchronous Machine to an Infinite Bus. Modeling of Excitation and Prime Mover Systems. Physical Characteristics and Models. Excitation System Control. Automatic Voltage Regulator. Prime Mover Control Systems. Speed Governors.

13 Hours

Modeling of other Power System Components

Modeling of Transmission Lines and Loads. Transmission Line Physical Characteristics. Transmission Line Modeling. Load Models - induction machine model. Frequency and Voltage Dependence of Loads. Other Subsystems – HVDC and FACTS controllers, Wind Energy Systems.

Stability Analysis

Angular stability analysis in Single Machine Infinite Bus System. Angular Stability in multimachine systems – Intra-plant, Local and Inter-area modes. Frequency Stability: Centre of Inertia Motion. Load Sharing: Governor drop. Single Machine Load Bus System: Voltage

Stability. Introduction to Torsional Oscillations and the SSR phenomenon. Stability Analysis

Tools: Transient Stability Programs, Small Signal Analysis Programs.

15 Hours

Enhancing System Stability

Planning Measures. Stabilizing Controllers (Power System Stabilizers). Operational Measures-Preventive Control. Emergency Control.

Projects related to this course should be given to students (in groups) in order to promote team work and ethical values.

14 Hours

- . K.R. Padiyar, "Power System Dynamics, Stability and Control", B. S. Publications, 2002.
- 2. P. Kundur, "Power System Stability and Control", McGraw Hill, 1995.
- 3. P. Sauer and M. A. Pai, "Power System Dynamics and Stability", Prentice Hall, 1997.

Course Title:	INDU	USTRIAL ELECTRICAL SYSTEMS	٦	Т	Р	Cr					
Course Code:	ELE4	64	4	0	0	4					
Course Outcome:	CO1	Basics about electrical equipment's in manufacturing									
After completion of course, the students should be able to	CO2	Application of electrical equipment's in differ types of industries									
	CO3	CO3 Types and working of electric traction systems									
	CO4 Industry oriented consumption of electrical energy										
Flactrical Syste											

Electrical System Components

LT system wiring components, selection of cables, wires, switches, distribution box, metering system, Tariff structure, protection components- Fuse, MCB, MCCB, ELCB, inverse current characteristics, symbols, single line diagram (SLD) of a wiring system, Contactor, Isolator, Relays, MPCB, Electric shock and Electrical safety practices.

14 Hours

Residential and Commercial Electrical Systems

Types of residential and commercial wiring systems, general rules and guidelines for installation, load calculation and sizing of wire, rating of main switch, distribution board and

protection devices, earthing system calculations, requirements of commercial installation, deciding lighting scheme and number of lamps, earthing of commercial installation, selection

and sizing of components.

Illumination Systems

Understanding various terms regarding light, lumen, intensity, candlepower, lamp efficiency,

specific consumption, glare, space to height ratio, waste light factor, depreciation factor, various illumination schemes, Incandescent lamps and modern luminaries like CFL, LED and

their operation, energy saving in illumination systems, design of a lighting scheme for a residential and commercial premises, flood lighting.

14 Hours

Industrial Electrical Systems I

HT connection, industrial substation, Transformer selection, Industrial loads, motors,

of motors, SLD, Cable and Switchgear selection, Lightning Protection, Earthing design, Power factor correction – kVAR calculations, type of compensation, Introduction to PCC, MCC panels. Specifications of LT Breakers, MCB and other LT panel components.

Industrial Electrical Systems II

DG Systems, UPS System, Electrical Systems for the elevators, Battery banks, Sizing the DG, UPS and Battery Banks, Selection of UPS and Battery Banks.

13 Hours

Industrial Electrical System Automation

Study of basic PLC, Role of in automation, advantages of process automation, PLC based

control system design, Panel Metering and Introduction to SCADA system for distribution automation.

14 Hours

- 1. S. L. Uppal and G. C. Garg, "Electrical Wiring, Estimating & Costing", Khanna publishers, 2008.
- 2. K. B. Raina, "Electrical Design, Estimating & Costing", New age International, 2007.
- 3. S. Singh and R. D. Singh, "Electrical estimating and costing", DhanpatRai and Co., 1997.
- 4. Web site for IS Standards.
- 5. H. Joshi, "Residential Commercial and Industrial Systems", McGraw Hill Education, 2008.

Course	Title:	ADV	L	Т	Р	Cr				
Course	Code:	ELE4	65	1	0	4				
	Outcome: completion of the students	CO1	Design controllers for closed-loop operation of a separately excited DC moto drive with symmetrical optimization technique							
should be able to		CO2	Implement sine-triangle and Space Vector PWN analog digital platforms	/I te	chnic	ques	on and			
		CO3	Understand the power circuit topologies and the si technique for 3-level NPC, FC, HB inverters	ne tı	riang	jle P	WM			
		CO4	Understand and simulate the behavior of high performance induction Motor drives using the principles of Vector Control and DTC							
		CO5	Understand and apply the concept of vector c drives	ontro	ol to	PM	1SM			
Unit A	Power Converters for AC Drives PWM control of inverter, selected harmonic elimination, space vector modulation, current control of VSI, three-level inverter, Different topologies, SVM for 3 level inverter, Diode rectifier with boost chopper, PWM converter as line side rectifier, current fed inverters with self-commutated devices. Control of CSI, H bridge as a 4-Q drive.									
					14	Ηοι	ırs			
Unit B	Induction motor drives Different transformations and reference from theory, modeling of induction									
					13	Ηοι	ırs			
Unit C	Synchronous motor drives Modeling of synchronous machines, open loop v/f control, vector control, direct torque control, CSI fed synchronous motor drives. Permanent magnet motor drives Introduction to various PM motors, BLDC and PMSM drive configuration, comparison, block diagrams, Speed and torque control in BLDC and PMSM.									
					14	Ηοι	ırs			

Switched reluctance motor drives

Evolution of switched reluctance motors, various topologies for SRM drives, comparison, Closed loop speed and torque control of SRM.

DSP based motion control

Use of DSPs in motion control, various DSPs available, realization of some basic blocks in

DSP for implementation of DSP based motion control.

14 Hours

- . B. K. Bose, "Modern Power Electronics and AC Drives", Pearson Education, Asia, 2003.
- 2. P. C. Krause, O. Wasynczuk and S. D. Sudhoff, "Analysis of Electric Machinery and Drive Systems", John Wiley & Sons, 2013.
- 3. H. A. Taliyat and S. G. Campbell, "DSP based Electromechanical Motion Control", CRC press, 2003.
- 4. R. Krishnan, "Permanent Magnet Synchronous and Brushless DC motor Drives", CRC Press, 2009.

Course	e Title:			CONTROL SYSTEMS DESIGN ELE467									Т	Р	Cr
Course	e Code) :]										1	0	4
Course Outcome: CO After completion of course, the students					Categorize different types of system and identify a set of algebraic equations to represent and model a complicated system into a more simplified form										
should be able to				CO2		Formulate different types of analysis in frequency domain to explain the nature of stability of the system.									
				CO3	solve t	solve the steady state and transient analysis of a system for standard inputs.									
				CO4	-	analyse feedback control mechanisms and design feedback control systems									
				CO5	technic	ques		mpact ty, and o		on		lag c	ompe		ation stem
RBTL N	•		2(Unde	erstand	ing), L3	(Applyi	ng), L4	(Analys	ing), L	5(Evalua	ating),	L6(Cre	ating	;)	
COs		CO	1		CO2		С	O3	CO4			CO5			
RBTL N	o.	L1,	L2		L4 L5 L4				L4						
CO/PO	Марр	ing: (St	rong(3)	/ Med	lium(2)	/ Weal	(1) inc	dicates s	strengt	h of co	relatio	n):			
	Prog	gram O	utcome	s (POs)/Progr	am Spe	cial O	ıtcome	(PSO's)						
COs	PO 1	PO2	PO3	PO 4	PO5	PO6	PO 7	PO8	PO9	PO1 0	PO1 1	PO 12	PS 1	0	PS O2
CO1	3	3	3	2	2	-	-	-	1	1	2	2	3	3	2
CO2	3	3	2	3	3	1	-	1	2	-	3	-		3	2
CO3	3	2	3	2	2	1	-	-	3	2	2	2	3	3	2
	2	2	2	2	3	-	-	-	2	-	3	-	3	3	2
CO4															

Unit A

Design Specifications

Introduction to design problem and philosophy. Introduction to time domain and

domain design specification and its physical relevance. Effect of gain on transient and steady

state response. Effect of addition of pole on system performance. Effect of addition of zero

on system response.

14 Hours

$\mathbf{\omega}$ Unit

Design of Classical Control System in the time domain

Introduction to compensator. Design of Lag, lead lag-lead compensator in time domain. Feedback and Feedforward compensator design. Feedback compensation. Realization of compensators.

13 Hours

Design of Classical Control System in frequency domain

Compensator design in frequency domain to improve steady state and transient response. Feedback and Feedforward compensator design using bode diagram.

Design of PID controllers

Design of P, PI, PD and PID controllers in time domain and frequency domain for first, second and third order systems. Control loop with auxiliary feedback – Feedforward control.

14 Hours

Control System Design in state space

Review of state space representation. Concept of controllability & observability, effect of pole-zero cancellation on the controllability & observability of the system, pole placement design through state feedback. Ackerman's Formula for feedback gain design. Design of Observer. Reduced order observer. Separation Principle.

Nonlinearities and its effect on system performance

Various types of non-linearities. Effect of various non-linearities on system performance. Singular points. Phase plot analysis.

14 Hours

- . N. Nise, "Control system Engineering", John Wiley, 2000.
- 2. I. J. Nagrath and M. Gopal, "Control system engineering", Wiley, 2000.
- 3. M. Gopal, "Digital Control Engineering", Wiley Eastern, 1988.
- 4. K. Ogata, "Modern Control Engineering", Prentice Hall, 2010.
- 5. B. C. Kuo, "Automatic Control system", Prentice Hall, 1995.
- 6. J. J. D'Azzo and C. H. Houpis, "Linear control system analysis and design (conventional and modern)", McGraw Hill, 1995.
- 7. R. T. Stefani and G. H. Hostetter, "Design of feedback Control Systems", Saunders College Pub, 1994

Course	Title:			ADVANCED INSTRUMENTATION										Т	Р	C r		
Course	Code	:		ELE4	68								4	0	0	4		
Course Outcome: CO1 After completion of					Describe general principles and procedures involved in Electronic Measuring Instruments													
	course, the students should be able to			CO2	Learn	Learn basic principles and instrumentation of thermal analysis												
CO				СОЗ	Learn basic knowledge about the calibration of analytical instruments													
CO					Understand the effects of different constituent in a process outcome and analysis the performance of various on-line or off-line instruments													
				CO5	Apply t	he kno	wle	dge	of Tac	tile Se	nsors							
RBTL No																		
L1(Rem	embe	ring), L	2(Unde	erstand	ling), L3	(Applyi	ng)	, L4((Analys	ing), L	(Evalu	ating), I	L6(Cr	eatir	ng)			
COs		CO			CO2							CO4			CO5			
RBTL No	0.	L1,	L2		L4 L5 L4							L4						
CO/PO	Маррі	ng: (St	rong(3) / Med	dium(2)	/ Weal	(1)	ind	icates	strengt	h of co	rrelatio	n):					
	Prog	ram Oı	utcom	es (POs)/Progr	am Spe	cial	Ou	tcome	(PSO's)								
COs	PO 1	PO2	PO3	PO 4	PO5	PO6	PC 7)	PO8	PO9	PO1 0	PO1 1	PO 12	F 1	PSO	PS O 2		
CO1	3	3	3	2	2	-		-	-	1	1	2	2		3	2		
CO2	3	3	2	3	3	1		-	1	2	-	3	-		3	2		
CO3	3	2	3	2	2	1		-	-	3	2	2	2		3	2		
CO4	2	2	2	2	3	-		-	1	2	-	3	-		3	2		
CO5	3	3	3	2	2	-		1	-	3	3	-	2		3	2		
						l				l	l							
Unit A	spee	ed osci lulation	llosco n anal	pe, sar yzer, s	Instrumpling pectrure analy	oscillo n analy	sco yze	pe r, w	,DSO /aveme	wave a	nalyz	er, dist	ortio	n an	alyz			
														14	4 Hou	urs		

 $\mathbf{\omega}$

Advanced Sensors: Current and voltage sensors, intelligent pressure transducer, turbidity measurement, microwave sensor, ceramic sensor as gas sensor. Vision Sensors: overview, illumination consideration, vision sensors generalties, 2D sensor, 3D sensor, interfacing of vision sensors.

14 Hours

Optical Fibre Sensor: Introduction, extrinsix and dynamic fibre optic sensor, elementary principles, the design of optical fibre sensor, development of optical fibre sensor, phase modulated optical fibre sensor, frequency modulation in optical sensor, polarization modulation in fiber sensors, distributed optical fiber sensing DOFS, distributed micro bend strains sensor, distributed optical fibre temperature sensor, using the optical kerr effect, distributed optical fibre sensor for chemical species, fiber optic sensor for air pollution, optical fiber pressure sensor, optical fiber pressure sensor, optical fiber temperature sensor, optical fiber sensor for humidity.

13 Hours

Ultrasonic Instrumentation: Sirens, whistles, the wretch whistles, liquid ultrasonic, generators, solid transducers, piezoelectric transducers, magnetostrictive transducers, the production of very light intensity, depleted layer transducer, applications of ultrasonic processing, uses of ultrasonic in measurement and control, flow detection, application of ultrasonic to boilers.

Tactile Sensors: Overview, touch sensing, tactile sensing, interfacing of tactile sensors.

14 Hours

- . Allan Morris, "Principles of measurement and instrumentation", PHI.
- 2. J P Bartley, "Principles of measurement system", Longman London
- 3. SabrieSoloman, "Sensors and control system in manufacturing", McGraw Hill.
- 4. HKP Newbert, "Instrument transducer", Clarendon.
- 5. Cooper and Helfrick, "modern electronic instrumentation and measurement techniques", PHI.

Course Title:	POW	ER PLANT ENGINEERING	L	Т	Р	Cr						
Course Code:	ELE4	07	4	0	0	4						
Course Outcome: After completion of course, the students should be able to	CO1	Understand the Steam Generators, Condensers and Steam Power Plant	Understand the Steam Generators, Condensers And Turbines and Steam Power Plant									
	CO2	Gain the knowledge regarding Equipment, Plant layout, principle of working of Hydro Power plant										
	СОЗ	Familiarize the working principles of Nuclear Powe	er Plants									
	CO4	Understand the various diesel and gas turbine plan	ints									
	CO5	Basic knowledge of Combined operation of Different types Power Plants, and pollution control										

Steam Generators, Condensers And Turbines: Classification of steam generators, selection, operation of locomotive, Babcock Wilcox, Cochran boilers, Types of condensers, effect of air in condensers, Dalton's law of partial pressure, cooling water calculations, steam nozzles, types of steam turbine efficiencies, compounding, governing and control.

Steam Power Plant: Classification, Operation, Description of Rankin cycle, Regenerative cycle, Reheat-Regenerative Cycle, Binary Vapour Cycle, Selection of plant site and its layout, coal handling system, combustion system, Fluidised bed combustion, Ash handling, Feed pumps, Heat exchangers, Economizers, Superheaters, Reheaters, Air preheaters, Feed water heaters, Evaporators.

14 Hours

Hydro-Electric Power Plants: Hydrological Cycle, Hydrograph, Flow duration curve, Selection of site, Essential features, Classification of hydro plants, base and peak load plant, pumped storage plant. Run of river with and without pondage. Selection of water turbines for hydropower plant, Automatic and remote control of hydro-station, layout of hydropower plant.

Nuclear Power Plants: Nuclear physics, Binding energy, Radioactive decay. Fertile material, Mass defect, Nuclear reactions type and application, Generation of nuclear energy by fission, Nuclear reactors. Site selections, safety measures, plant layout, Fusion reaction, Future of nuclear power.

13 Hours

Gas Turbine: Elements of gas turbines, Open and closed cycles for gas turbines, Performance terms, Thermal refinement to gas turbines cycle, Plant layout, applications, gas turbines Cycle calculations.

Diesel Power Plants: Classifications of IC Engines and their performance, Four stroke and two-stroke diesel engines, combustion phenomenon; Essential components, Celane number, knocking, supercharging, operation and layout of diesel power plant.

14 Hours

Combined Operation Of Different Power Plants: Advantages of combined operation of plants, load division between power stations, coordination of different types of Power Plants.

Pollution Control: Pollution from thermal & nuclear plants, Particulate emission and control, electrostatic precipitator, solid waste disposal.

14 Hours

Suggested Books:

Chakrabarti A., Soni, M.L. Gupta P.V. and Bhatanagar U.S., "A Textbook on PowerSystem Engineering", DhanpatRai& Co.

- 1. EI-Wakit M.M., "Power Plant Engineering", McGraw Hill, USA
- 2. Rajput R.K., "Power Plant Engineering", Luxmi Publications
- 3. Sharma P.C., "Power Plant Engineering", Kataria& Sons
- 4. Skrotzki B.G.A. and Vapot W.A., "Power Station Engineering and Economy", Tata McGraw-Hill