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Lecture 3 Method of Separation of Variables

Separation of variables is one of the oldest technique for solving initial-boundary value

problems (IBVP) and applies to problems, where

e PDE is linear and homogeneous (not necessarily constant coefficients) and

e BC are linear and homogeneous.

Basic Idea: To seek a solution of the form
u(,t) = X (@)T(0),

where X () is some function of x and T'(¢) in some function of ¢. The solutions are simple
because any temperature u(z,t) of this form will retain its basic “shape” for different
values of time ¢. The separation of variables reduced the problem of solving the PDE
to solving the two ODEs: One second order ODE involving the independent variable x
and one first order ODE involving . These ODEs are then solved using given initial and

boundary conditions.

To illustrate this method, let us apply to a specific problem. Consider the following
IBVP:

PDE: u = Uy, 0<2<L,0<t< o0, (1)
BC: u(0,t) =0 u(L,t) =0, 0<t< oo, (2)
IC: u(z,0) = f(z), 0<z<L. (3)

Step 1:(Reducing to the ODEs) Assume that equation (1) has solutions of the form

| u(z,t) = X@)T(), |

where X is a function of x alone and T is a function of ¢ alone. Note that
u = X(2)T'(t) and uy, = X"(2)T(t).
Now, substituting these expression into u; = o®u,, and separating variables, we obtain

X(2)T'(t) = &2 X" (2)T(t)

'@t) _ X"(x)

72T X@)
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Since a function of ¢ can equal a function of  only when both functions are constant.
Thus,

() _ X"(x)

a2T(t)  X(z)

for some constant c. This leads to the following two ODEs

T'(t) — &®cT(t) = 0, (4)
X"(x) —cX(x) = 0. (5)

Thus, the problem of solving the PDE (1) is now reduced to solving the two ODEs.
Step 2:(Applying BCs)

Since the product solutions u(z,t) = X (z)T'(t) are to satisfy the BC (2), we have

w(0,t) = X(O)T(t) =0 and X(L)T(t)

0, t>0.

Thus, either T'(t) = 0 for all ¢ > 0, which implies that u(z,t) =0, or X(0) = X(L) =0

Ignoring the trivial solution u(z,t) = 0, we combine the boundary conditions X (0) =
X (L) = 0 with the differential equation for X in (5) to obtain the BVP:

X" (x) — eX(x)

0, X(0)=X(L)=0. (6)

There are three cases: ¢ < 0, ¢ > 0, ¢ = 0 which will be discussed below. It is convenient

to set ¢ = —A2 when ¢ < 0 and ¢ = A? when ¢ > 0, for some constant A > 0.

Case 1. (¢ = A2 > 0 for some A > 0). In this case, a general solution to the differential
equation (5) is
X(x) = C1eN 4 Che™?,

where (7 and Cy are arbitrary constants. To determine Cy and C5, we use the BC
X(0)=0, X(L)=0 to have

X(O) =C1+Cy =0,
X(L) = 016>\L + CQG_AL =0.

(7)
(8)

From the first equation, it follows that Cy = —C. The second equation leads to

Ci(eM —e ) =0,
= C1(62>‘L — 1) =0,
= Ch1=0.
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since (e2*F —1) > 0 as A > 0. Therefore, we have C; = 0 and hence Cy = 0. Consequently

X (xz) = 0 and this implies u(x,t) = 0 i.e., there is no nontrivial solution to (5) for the

case ¢ > 0.

Case 2. (when c=0)

The general solution solution to (5) is given by

X(J}) = (C5+ Cyx.
Applying BC yields C3 = Cy = 0 and hence X (z) = 0. Again, u(z,t) = X(z)T'(t) = 0.
Thus, there is no nontrivial solution to (5) for ¢ = 0.

Case 3. (When ¢ = —\% < 0 for some \ > 0)

The general solution to (5) is
X (x) = Cs cos(Azx) + Cg sin(Az).
This time the BC X (0) =0, X (L) =0 gives the system

Cs =0
Cscos(AL) + Cgsin(AL) = 0.

As C5 = 0, the system reduces to solving Cgsin(AL) = 0. Hence, either sin(AL) = 0 or
Cs = 0. Now
sin(AL)=0 = AL=nnm, n=0,+£1,+2,....
Therefore, (5) has a nontrivial solution (Cg # 0) when
0

AL =nm or )\:%, n=1,2,3,....

Here, we exclude n = 0, since it makes ¢ = 0. Therefore, the nontrivial solutions (eigen-

2

functions) X, corresponding to the eigenvalue ¢ = —\® are given by

Xo(z) = an sm(”Lﬂ), (9)

where a,,’s are arbitrary constants.
Step 3:(Applying IC)

Let us consider solving equation (4). The general solution to (4) with ¢ = =A% = (2F

is
—a? ()%t
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Combing this with (9), the product solution u(z,t) = X (x)T'(t) becomes

nmwTr 7(12(%)215

up(z,t) = Xn(x)Tn(t):ansin(T)bne

sin(”Lﬂ), n=1,2,3,...,

where ¢, is an arbitrary constant.

Since the problem (9) is linear and homogeneous, an application of superposition

principle gives

u(z,t) = Zun(l‘,t) = che_o‘Q(%)% sin(?), (10)
n=1 n=1

which will be a solution to (1)-(3), provided the infinite series has the proper convergence

behavior.

Since the solution (10) is to satisfy IC (3), we must have
= nwx
0) =S s (—) — f(z), 0 L.
u(z,0) nz:lc sin (— f(z) <z <
Thus, if f(z) has an expansion of the form
R nmwx
= psin (—— ), 11

/(@) Z:,: sin (477 (11)

which is called a Fourier sine series (FSS) with ¢,’s are given by the formula

2 (L . nTx
cn:L/O f(x)sm(T)d:c. (12)

Then the infinite series (10) with the coefficients ¢, given by (12) is a solution to the
problem (1)-(3).
ExAMPLE 1. Find the solution to the following IBVP:

U = 33Uy, 0<oz<m 0<t< o0, (13)
u(0,t) = wu(mt)=0, 0<t< oo, (14)
u(z,0) = 3sin2zx —6sindzr, 0<z <. (15)

Solution. Comparing (13) with (1), we notice that a? = 3 and L = 7. Using formula
(10), we write a solution u(z,t) as

o0

u(x,t) = Z cpe 3t sin(nz).

n=1
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To determine ¢,’s, we use IC (15) to have

oo
u(z,0) = 3sin 2z — 6sin b5z = Z cp sin(n).

n=1

Comparing the coefficients of like terms, we obtain
co =3 and c5= —6,
and the remaining ¢,’s are zero. Hence, the solution to the problem (13)-(15) is
u(z,t) = coe 3% sin(2x) + c5e 3% sin(5x)

= 3¢ ?sin(2z) — 6e” O sin(5z).

PrACTICE PROBLEMS

1. Solve the following IBVP:

ur = 16uy,, 0 <z <1, >0,
u(0,t) =0, u(1,t) =0, t>0,

u(z,0)=(1—2)z, 0 <z <l1.

2. Solve the following IBVP:

Ut = Uge, 0< <7, t>0,
uz(0,t) = ug(m,t) =0, t>0,

u(z,0) =1—sinz, 0 <z <.
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