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Lecture 2 The Maximum and Minimum Principle

In this lecture, we shall prove the maximum and minimum properties of the heat equation.

These properties can be used to prove uniqueness and continuous dependence on data of

the solutions of these equations.

To begin with, we shall first prove the maximum principle for the inhomogeneous heat

equation (F ̸= 0).

THEOREM 1. (The maximum principle) Let R : 0 ≤ x ≤ L, 0 ≤ t ≤ T be a closed

region and let u(x, t) be a solution of

ut − α2uxx = F (x, t) (x, t) ∈ R, (1)

which is continuous in the closed region R. If F < 0 in R, then u(x, t) attains its maximum

values on t = 0, x = 0 or x = L and not in the interior of the region or at t = T . If

F > 0 in R, then u(x, t) attains its minimum values on t = 0, x = 0 or x = L and not in

the interior of the region or at t = T .

Proof. We shall show that if a maximum or minimum occurs at an interior point

0 < x0 < l and 0 < t0 ≤ T , then we will arrive at contradiction. Let us consider the

following cases.

Case I: First, consider the case with F < 0. Since u(x, t) is continuous in a closed and

bounded region in R, u(x, t) must attain its maximum in R. Let (x0, t0) be the interior

maximum point. Then, we must have

uxx(x0, t0) ≤ 0, ut(x0, t0) ≥ 0. (2)

Since ux(x0, t0) = 0 = ut(x0, t0), we have

ut(x0, t0) = 0 if t0 < T.

If t0 = T , the point (x0, t0) = (x0, T ) is on the boundary of R, then we claim that

ut(x0, t0) ≥ 0

as u may be increasing at (x0, t0). Substituting (2) in (1), we find that the left side of

the equation (1) is non-negative while the right side is strictly negative. This leads to

a contradiction and hence, the maximum must be assumed on the initial line or on the

boundary.



MODULE 5: HEAT EQUATION 6

Case II: Consider the case with F > 0. Let there be an interior minimum point

(x0, t0) in R such that

uxx(x0, t0) ≥ 0, ut(x0, t0) ≤ 0. (3)

Note that the inequalities (3) is same as (2) with the signs reversed. Again arguing as

before, this leads to a contradiction, hence the minimum must be assumed on the initial

line or on the boundary.

Note: When F = 0 i.e., for homogeneous equation, the inequalities (2) at a maximum or

(3) at a minimum do not leads to a contradiction when they are inserted into (1) as uxx

and ut may both vanish at (x0, t0).

Below, we present a proof of the maximum principle for the homogeneous heat equa-

tion.

THEOREM 2. (The maximum principle) Let u(x, t) be a solution of

ut = α2uxx 0 ≤ x ≤ L, 0 < t ≤ T, (4)

which is continuous in the closed region R : 0 ≤ x ≤ L and 0 ≤ t ≤ T . The maximum

and minimum values of u(x, t) are assumed on the initial line t = 0 or at the points on

the boundary x = 0 or x = L.

Proof. Let us introduce the auxiliary function

v(x, t) = u(x, t) + ϵx2, (5)

where ϵ > 0 is a constant and u satisfies (4). Note that v(x, t) is continuous in R and

hence it has a maximum at some point (x1, t1) in the region R.

Assume that (x1, t1) is an interior point with 0 < x1 < L and 0 < t1 ≤ T . Then we

find that

vt(x1, t1) ≥ 0, vxx(x1, t1) ≤ 0. (6)

Since u satisfies (4), we have

vt − α2vxx = ut − α2uxx − 2α2ϵ = −2α2ϵ < 0. (7)

Substituting (6) into (4) and using (7 ) now leads to

0 ≤ vt − α2vxx < 0,

which is a contradiction since the left side is non-negative and the right side is strictly

negative. Therefore, v(x, t) assumes its maximum on the initial line or on the boundary

since v satisfies (1) with F < 0.
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Let

M = max{u(x, t)} on t = 0, x = 0, and x = L,

i.e., M is the maximum value of u on the initial line and boundary lines. Then

v(x, t) = u(x, t) + ϵx2 ≤M + ϵL2, for 0 ≤ x ≤ L, 0 ≤ t ≤ T. (8)

Since v has its maximum on t = 0, x = 0, or x = L, we obtain

u(x, t) = v(x, t)− ϵx2 ≤ v(x, t) ≤M + ϵL2. (9)

Since ϵ is arbitrary, letting ϵ→ 0, we conclude that

u(x, t) ≤M for all (x, t) ∈ R, (10)

and this completes the proof.

REMARK 3.

• The minimum principle for the heat equation can be obtained by replacing the

function u(x, t) by −u(x, t), where u(x, t) is a solution of (4). Clearly, −u is also

a solution of (4) and the maximum values of u correspond to the minimum values

of u. Since u satisfies the maximum principle, we conclude that u assumes its min-

minimum values on the initial line or on the boundary lines. In particular, this

implies that if the initial and boundary data for the problem are non- negative, then

the solution must be non-negative.

• In geometrical term, the maximum principle states that if a solution of the problem

(4) is graphed in the xtu-space, then the surface u = u(x, t) achieves its maximum

height above one of the three sides x = 0, x = L, t = 0 of the rectangle 0 ≤ x ≤ L,

0 ≤ t ≤ T .

• From a physical perspective, the maximum principle states that the temperature, at

any point x inside the rod at any time t (0 ≤ t ≤ T ), is less than the maximum of

the initial temperature distribution or the maximum of the temperatures prescribed

at the ends during the time interval [0, T ].

1 Uniqueness and continuous dependence

As a consequence of the maximum principle, we can show that the heat flow problem has

a unique solution and depend continuously on the given initial and boundary data.
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THEOREM 4. (Uniqueness result) Let u1(x, t) and u2(x, t) be solutions of the following

problem

PDE: ut = α2uxx, 0 < x < L, t > 0,

BC: u(0, t) = g(t), u(L, t) = h(t), (11)

IC: u(x, 0) = f(x),

where f(x), g(t) and h(t) are given functions. Then u1(x, t) = u2(x, t), for all 0 ≤ x ≤ L

and t ≥ 0.

Proof. Let u1(x, t) and u2(x, t) be two solutions of (11). Set w(x, t) = u1(x, t) −
u2(x, t). Then w satisfies

wt = α2wxx 0 < x < L, t > 0,

w(0, t) = 0, w(L, t) = 0,

w(x, 0) = 0.

By the maximum principle (cf. Theorem 2), we must have

w(x, t) ≤ 0 =⇒ u1(x, t) ≤ u2(x, t), for all 0 ≤ x ≤ L, t ≥ 0.

A similar argument with w̄ = u2 − u1 yields

u2(x, t) ≤ u1(x, t) for all 0 ≤ x ≤ L, t ≥ 0.

Therefore, we have

u1(x, t) = u2(x, t) for all 0 ≤ x ≤ L, t ≥ 0,

and this completes the proof.

THEOREM 5. (Continuous Dependence on the IC and BC) Let u1(x, t) and u2(x, t),

respectively, be solutions of the problems

ut = α2uxx; ut = α2uxx

u(0, t) = g1(t) u(L, t) = h1(t); u(0, t) = g2(t) u(L, t) = h2(t) (12)

u(x, 0) = f1(x); u(x, 0) = f2(x),

in the region 0 ≤ x ≤ L, t ≥ 0. If

|f1(x)− f2(x)| ≤ ϵ for all x, 0 ≤ x ≤ L,
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and

|g1(t)− g2(t)| ≤ ϵ and |h1(t)− h2(t)| ≤ ϵ for all t, 0 ≤ t ≤ T,

for some ϵ ≥ 0, then we have

|u1(x, t)− u2(x, t)| ≤ ϵ for all x and t,where 0 ≤ x ≤ L, 0 ≤ t ≤ T.

Proof. Let v(x, t) = u1(x, t)− u2(x, t). Then vt = α2vxx and we obtain

|v(x, 0)| = |f1(x)− f2(x)| ≤ ϵ, 0 ≤ x ≤ L,

|v(0, t)| = |g1(t)− g2(t)| ≤ ϵ, 0 ≤ t ≤ T,

|v(L, t)| = |h1(t)− h2(t)| ≤ ϵ, 0 ≤ t ≤ T.

Note that the maximum of v on t = 0 (0 ≤ x ≤ L) and x = 0 and x = L (0 ≤ t ≤ T ) is

not greater than ϵ. The minimum of v on these boundary lines is not less than −ϵ. Hence,

the maximum/minimum principle yields

−ϵ ≤ v(x, t) ≤ ϵ =⇒ |u1(x, t)− u2(x, t)| = |v(x, t)| ≤ ϵ.

Note: (i) We observe that when ϵ = 0, the problems in (12) are identical. We conclude

that |u1(x, t)− u2(x, t)| ≤ 0 (i.e. u1 = u2). This proves the uniqueness result.

(ii) Suppose a certain initial/boundary value problem has a unique solutions. Then

a small change in the initial and/or boundary conditions yields a small change in the

solutions.

For the inhomogeneous equation (1), we have seen that the maximum or minimum

values must be attained either on the initial line or the boundary lines and that they

cannot be assumed in the interior. This result is known as a strong maximum or minimum

principle.

THEOREM 6. (Strong maximum principle) Let u(x, t) be a solution of the heat equa-

tion in the rectangle R : 0 ≤ x ≤ L, 0 ≤ t ≤ T . If u(x, t) achieves its maximum at

(x∗, T ), where 0 < x∗ < L, then u must be constant in R.

Practice Problems

1. Use the maximum/minimum principle to show that the solution u of the problem

ut = uxx, 0 < x < π, t > 0,

ux(0, t) = 0, ux(π, t) = 0, t > 0,

u(x, 0) = sin(x) +
1

2
sin(2x), 0 ≤ x ≤ π

satisfies 0 ≤ u(x, t) ≤ 3
√
3

4 , t ≥ 0.
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2. Let Q = {(x, t) | 0 < x < π, 0 < t ≤ T}. Let u solves

ut = uxx in Q,

u(0, t) = 0, u(π, t) = 0, 0 ≤ t ≤ T,

u(x, 0) = sin2(x), 0 ≤ x ≤ π.

Use maximum principle to show that 0 ≤ u(x, t) ≤ e−t sinx in Q.


	pde-lectures

