THECONTROL
SYSTEM

INTRODUCTION

In the previous chapters, the dynamic behavior of several basic systems was
examined. With this background, we can extend the discussion to a complete
control system and introduce the fundamental concept of feedback. In order to
work with a familiar system, the treatment will be based on the illustrative example
of Chap. 1, which is concerned with a stirred-tank heater.

Figure 9.1 is a sketch of the apparatus. To orient the reader, the physical
description of this control system will be reviewed. A liquid stream at a tempera-
ture T; enters an insulated, well-stimed tank at a constant flow rate w (mass/time).
It is desired to maintain (or control) the temperature in the tank at g by means
of the controller. If the measured tank temperature T, differs from the desired
temperature T, the controller senses the difference or error, € = Tg = Ty, and
changes the heat input in such a way as to reduce the magnitude of €. If the
controller changes the heat input to the tank by an amount that is proportional to
€, we have proportional control.

In Fig. 9.1, it is indicated that the source of heat input ¢ may be electricity
or steam. If an electrical source were used, the final control element might be a
variable transformer that is used to adjust current to a resistance.heating element;
if steam were used, the final control element would be a control valve that adjusts
the flow of steam. In either case, the output signal from the controller should
adjust ¢ in such a way as to maintain control of the temperature in the tank.
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Components of a Control System

The system shown in Fig. 9.1 may be divided into the following components:

1. Process (stirred-tank heater).

2. Measuring element (thermometer).

3. Controller.

4. Final control element (variable transformer or control valve).

Each of these components can be readily identified as a separate physical
item in the process. In general, these four components will constitute most of
the control systems that we shall consider in this text; however, the reader should
realize that more complex control systems exist in which more components are
used. For example, there are some processes which require a cascade control
system in which two controllers and two measuring elements are used. A cascade
system is discussed in Chap. 18.

Block Diagram

For computational purposes, it is convenient to represent the control system of
Fig. 9.1 by means of the block diagram shown in Fig. 9.2. Such a diagram makes
it much easier to visualize the relationships among the various signals. New terms,
which appear in Fig. 9.2, are set point and loud. The set point is a synonym for

the desired value of the controlled variable. The load refers to a change in any

variable that may cause the controlled variable of the process to change. In this
example, the inlet temperature T; is a load variable. Other possible loads for this
system are changes in flow rate and heat loss from the tank. (These loads are not
shown on the diagram.)

The control system shown in Fig. 9.2 is called a closed-loop system or a
feedback system because the measured value of the controlled variable is returned
or “fed back” to a device called the comparator. In the comparator, the controlled
variable is compared with the desired value or sef point. If there is any difference
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Block diagram of a simple control system.

between the measured variable and the set point, an error is generated. This error
enters a controller, which in turn adjusts the final control element in order to
return the controlled variable to the set point.

Negative Feedback versus Positive Feedback

Several terms have been used that may need further clarification. The feedback
principle, which is illustrated by Fig. 9.2, involves the use of the controlled vari-
able 7' to maintain itself at a desired value Tg.The arrangement of the apparatus
of Fig. 9.2 is often described as negative feedback to contrast with another ar-
rangement called positive feedback. Negative feedback ensures that the difference
between Tg and T, is used to adjust the control element so that the tendency is
to reduce the error. For example, assume that the system is at steady state and
that T = T,, = Tg. If the load T; should increase, T and T, would start to
increase, which would cause the error € to become negative. With proportional
control, the decrease in emor would cause the controller and final control element
to decrease the flow of heat to the system with the result that the flow of heat
would eventually be reduced to a value such that 7" approaches Tg. A verbal de-
scription of the operation of a feedback control system, such as the one just given,
is admittedly inadequate, for this description necessarily is given as a sequence of
events. Actually all the components operate simultaneously, and the only adequate
description of what is occurring is a set of simultaneous differential equations.
This more accurate description is the primary subject matter of the present and
succeeding chapters.

If the signal to the comparator were obtained by adding Tk and T,, we
would have a positive feedback system, which is inherently unstable. To see that
this is true, again assume that the system is at steady state and that 7" =T =Tg.
If T; were to increase, T and T, would increase, which would cause the signal
the comparator (€ in Fig. 9.2) to increase, with the result that the heat to the
system would increase. However, this action, which is just the opposite of that
needed, would cause T to increase further. It should be clear that this situation



would cause T to “run away” and control would not be achieved. For this reason,
positive feedback would never be used intentionally in the system of Fig. 9.2.
However, in more complex systems it may arise naturally. An example of this is
discussed in Chap. 21.

Servo Problem versus Regulator Problem

The control system of Fig. 9.2 can be considered from the point of view of its
ability to handle either of two types of situations. In the first situation, which is
called the servomechanism-type (or servo) problem, we assume that there is no
change in load T; and that we are interested in changing the bath temperature
according to some prescribed function of time. For this problem, the set point Tg
would be changed in accordance with the desired variation in bath temperature.
If the variation is sufficiently slow, the bath temperature may be expected to follow
the variation in Ty very closely. There are occasions when a control system in
the chemical industry will be operated in this manner. For example, one may be
interested in varying the temperature of a reactor according to a prescribed time-
temperature pattern. However, the majority of problems that may be described as
the servo type come from fields other than the chemical industry. The tracking of
missiles and aircraft and the automatic machining of intricate parts from a master
pattern are well-known examples of the servo-type problem. The other situation
will be referred to as the regulator problem. In this case, the desired value Ty is
to remain fixed and the purpose of the control system is to maintain the controlled
variable at T in spite of changes in load T;. This problem is very common in the
chemical industry, and a complicated industrial process will often have many self-
contained control systems, each of which maintains a particular process variable
at a desired value. These control systems are of the regulator type.

In considering control systems in the following chapters, we shall frequently
discuss the response of a linear control system to a change in set point (servo
problem) separately from the response to a change in load (regulator problem).
However, it should be realized that this is done only for convenience. The basic
approach to obtaining the response of either type is essentially the same, and
the two responses may be superimposed to obtain the response to any linear
combination of set-point and load changes.

DEVELOPMENT OF BLOCK DIAGRAM

Each block in Fig. 9.2 represents the functional relationship existing between the
input and output of a particular component. In the previous chapters, such input-
output relations were developed in the form of transfer functions. In block-diagram
representations of control systems, the variables selected are deviation variables,
and inside each block is placed the transfer function relating the input-output pair
of variables. Finally, the blocks are combined to give the overall block diagram.
This is the procedure to be followed in developing Fig. 9.2.



Process

Consider first the block for the process. This block will be seen to differ somewhat

from those presented in previous chapters in that two input variables are present;

however, the procedure for developing the transfer function remains the same.
An unsteady-state energy balance* around the tank gives

g+ wC(T, = T,) = wC(l' = Tp) = pCV‘Z—Tt‘ ©.1)

where T, is the reference temperature.
At steady state, dT/dt is zero, and Eq. (9.1) can be written

gs + wC(Ti; = T,) =wC(Ts=T,)=0 9.2)
where the subscript s has been used to indicate steady state.
Subtracting Eq. (9.2) from Eq. (9.1) gives
d(T ~Ty)
dt

Notice that the reference temperature T, cancels in the subtraction. If we
introduce the deviation variables

q=qs+ wCl(Ti = Ti,) = (T =Tl = pCV 9.3)

T =Ty=T, (9.4)
=49~ qs 9.5
T'= &P, (9.6)

Eq. (9.3) becomes
0+ wC(T/=1) = pCV%—- 9.7)

Taking the Laplace transform of Eq. (9.7) gives

Q(s) + wC[T/(s) = T’(s)] = pCVsT'(s) 9.8)
or
T'(s)(ﬂs + 1] = 2(s) + T{(s) 9.9)
w wc

*In this analysis, it is assumed that the flow rate of heat g is instantaneously available and independent

of the temperature in the tank. In some stirred-tank heaters, such as a jacketed kettle, ¢ depends on
both the temperature of the fluid in the jacket and the temperature of the fluid in the kettle. In this

introductory chapter, systems (electrically heated tank or direct steam-heated tank) are selected for
which this complication can be ignored. In Chap. 21, the analysis of a steam-jacketed kettle is given
in which the effect of kettle temperature on ¢ is taken into account.



This last expression can be written

vy wC 1 ;
T(s) = —p 1Q(s)+ — 1T,-(s) (9.10)
where
P PV
w

If there is a change in Q(t) only, then T,'(t) = 0 and the transfer function
relating 7" to Q is

T'(s) _ 1wC

o(s)  7ms+1

If there is a change in T;(t) only, then Q(t) = 0 and the transfer function relating
T'to T} is

9.11)

T'(s) !
T/(s) 7s+1

Equation (9.10) is represented by the block diagram shown in Fig. 9.3a.
This diagram is simply an alternate way to express Eq. (9.10) in terms of the
transfer functions of Eqs. (9.11) and (9.12). Superposition makes this representa-
tion possible. Notice that, in Fig. 9.3, we have indicated summation of signals by
the symbol shown in Fig. 9.4, which is called a summing junction. Subtraction
can also be indicated with this symbol by placing a minus sign at the appropriate
input. The summing junction was used previously as the symbol for the compara-
tor of the controller (see Fig. 9.2). This symbol, which is standard in the control
literature, may have several inputs but only one output.

A block diagram that is equivalent to Fig. 9.3¢ is shown in Fig. 9.3b. That
this diagram is correct can be seen by rearranging Eq. (9.10); thus

9.12)

; ; 1/wC
T'(s) = [Q(s) + wCT;(s)] 9.13)
s +1
T;(s)% T:+l
Ti(s)

2 & | (%)
Q(s)—> 'nil. + T'(s) Q(s) -l- 7s+1 —;'?;)

(a) (b)
FIGURE 9-3

Block diagram for process.
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In Fig. 9.3b, the input variables Q(s) and wCT/(s) are summed before being
operated on by the transfer function 1/wC/(7s + 1).

The physical situation that exists for the control system (Fig. 9.1) if steam
heating is used requires more careful analysis to show that Fig. 9.3 is an equivalent
block diagram. Assume that a supply of steam at constant conditions is available
for heating the tank. One method for introducing heat to the system is to let the
steam flow through a control valve and discharge directly into the water in the
tank, where it will condense completely and become part of the stream leaving
the tank (see Fig. 9.5).

If the flow of steam, f (pounds/time), is small compared with the inlet flow
w, the total outlet flow is approximately equal to w. When the system is at steady
state, the heat balance may be written

wC(T;, = Tp) = wC(Ts = To) + fo(Hg = Hy,) = 0 9.14)

where T, = reference temperature used to evaluate enthalpy of all streams en-
tering and leaving tank
H, = specific enthalpy of the steam supplied, a constant
H = specific enthalpy of the condensed steam flowing out at T, as part
of the total stream

The term H; may be written in terms of heat capacity and temperature; thus
H,- CTs =T, (9.15)

From this, we see that, if the steady-state temperature changes, H  changes.
In Eq. (9.14), f;(Hg = H,,) is equivalent to the steady-state input ¢ used pre-
viously, as can be seen by comparing Eq. (9.2) with (9.14).

Now consider an unsteady-state operation in whichfis much less than w and
the temperature T of the bath does not deviate significantly from the steady-state
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FIGURE 9-5
Supplying heat by steam.




temperature Ts. For these conditions, we may write the unsteady-state balance
approximately;  thus

wC(T; = T,) —=wC(T —=T,) + f(Hg = Hy,) = PCV% (9.16)

In a practical situation for steam, H ; will be about 1000 Btu/lb,,. If the tempera-

ture of the bath, T, never deviates from T by more than 10°, the error in using the

term f(H 5= 1,) instead of f(H g H/) will be no more than 1 percent. Under
these conditions, Eq. (9.16) represents the system closely, and by comparing Eq.
(9.16) with Eq. (9.1), it is clear that

q= fHy; —Hy,) 9.17)

Therefore, g is proportional to the flow of steam f, which may be varied by
means of a control valve. It should be emphasized that the analysis presented
here is only approximate. Both f and the deviation in T must be small. The
smaller they become, the more closely Eq. (9.16) represents the actual physical
system. An exact analysis of the problem leads to a differential equation with
time-varying coefficients, and the transfer-function approach does not apply. The
problem becomes considerably more difficult. A better approximation will be
discussed in Chap. 21, where linearization techniques are used.

Measuring Element

The temperature-measuring element, which senses the bath temperature T and
transmits a signal T, to the controller, may exhibit some dynamic lag. From
the discussion of the mercury thermometer in Chap. 5, we observed this lag to
be first-order. In this example, we shall assume that the temperature-measuring
element is a first-order system, for which the transfer function is

! l

where the input-output variables T’ and T':, are deviation variables, defined as
T'=T-T,
Tp=Tm—=Tm,

Note that, when the control system is at steady state, Ts= T, , which means that
the temperature-measuring element reads the true bath temperature. The transfer
function for the measuring element may be represented by the block diagram
shown in Fig. 9.6.

T'(5) ——> — AT

FIGURE 9-6
Block diagram of measuring element.

Tms+1




Controller and Final Control Element

For convenience, the blocks representing the controller and the final control ele-
ment are combined into one block. In this way, we need be concerned only with
the overall response between the error and the heat input to the tank. Also, it is
assumed that the controller is a proportional controller. (In the next chapter, the
response of other controllers, which are commonly used in control systems, will
be described.) The relationship for a proportional controller is

q = KCE + A (919)

where € = T = T}y,
Tr = set-point temperature
K. = proportional sensitivity or controller gain
A = heat input when € = 0

At steady state, it is assumed* that the set point, the process temperature,
and the measured temperature are all equal to each other; thus

Tp, = Ts = Ty, (9.20)
Let €' be the deviation variable for error; thus
€ = € —¢ (9.21)

where €5 = Tg, ™= Tom,
Since Tp, = Ton,, €5 = 0 and Eq. (9.21 becomes

¢ =e—-0=¢€ (9.22)

This result shows that € is itself a deviation variable.
Since €; = 0, Eq. (9.19) becomes at steady state

gs=Ke,+A=0+A=A
Equation (9.19) may now be written in terms of g ; thus
q= Kc€+ g5
or
0= Kce (9.23)

where Q = g = ¢;
The transform of Eq. (9.23) is simply

Q(s) = K.€(s) (9.24)

*In a practical situation, the equality among the three variables, T, T, and Tg, at steady state as
given by Eq. (9.20) can always be established by adjustment of the instruments. The equality between
T and T, can be achieved by calibration of the measuring element. The equality between T, and
Tg can be achieved by adjustment of the proportional controller.
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T,(s) Block diagram of proportional controller.

Note that €, which is also equal to €', may be expressed as
€=Tr—Tg,~ T = Tn,) (9.25)
or
€e=Ty=T, (9.26)
Equation (9.25) follows from the definition of € and the fact that Tg, = Tp,.
Taking the transform of Eq. (9.26) gives
E(S) = Ty(s) = Tp(s) (9.27)

The transfer function for the proportional controller given by Eq. (9.24) and the
generation of error given by Eq. (9.27) may be expressed by the block diagram
shown in Fig. 9.7.
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