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3.6 Analysis of Members under Flexure (Part V) 
This section covers the following topics. 

• Analysis of Partially Prestressed Section 

• Analysis of Unbonded Post-tensioned Beam 

• Analysis of Behaviour 

 

3.6.1 Analysis of Partially Prestressed Section  
 

Introduction  

The analyses that are presented in the earlier sections, are for members which do not 

have any conventional non-prestressed reinforcement. Usually conventional 

reinforcement is provided in addition to the prestressing steel.  When this reinforcement 

is considered in the flexural capacity, the section is termed as a partially prestressed 

section. 

  

The reasons for using a partially prestressed section are as follows. 

1) The section is economical. 

2) The cambering is less compared to an equivalent section without conventional 

reinforcement. 

3) The ductility is more in a partially prestressed section. 

4) Any reversal of moments (for example, due to earthquake) is not detrimental as 

compared to an equivalent section without conventional reinforcement. 

 
Analysis  
A partially prestressed section can be either rectangular or flanged. A section can be 

doubly reinforced with reinforcement near the compression face. 

  

Here, the equations for a doubly reinforced rectangular section are given.  

The following sketch shows the beam cross section, strain profile, stress diagram and 

force couples at the ultimate state.  
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Figure 3-6.1    Sketches for analysis of a partially prestressed section 

 

The variables in the above figure are explained. 

b  = breadth of the section  

d  = depth of the centroid of the reinforcing steel (tension side)  

d’  = depth of the centroid of the reinforcing steel (compression side)  

dp  = depth of the centroid of prestressing steel (CGS)  

As  = area of the reinforcing steel (tension side)  

As’  = area of the reinforcing steel (compression side)  

Ap  = area of the prestressing steel  

∆εp  = strain difference in the prestressing steel when strain in concrete is zero 

xu  = depth of the neutral axis at ultimate  

εs  = strain in reinforcing steel (tension side) at ultimate  

εs’  = strain in reinforcing steel (compression side) at ultimate  

εpu  = strain in prestressing steel at the level of CGS at ultimate  

fs  = stress in reinforcing steel (tension side) at ultimate  

fs’  = stress in reinforcing steel (compression side) at ultimate  

fpu  = stress in prestressing steel at ultimate. 

 

The strain difference (∆εp) is further explained in Section 3.4, Analysis of Member under 

Flexure (Part III). 

 

The stress block in concrete is derived from the constitutive relationship for concrete.  

The relationship is explained in Section 1.6, Concrete (Part II).  The compressive force 

in concrete can be calculated by integrating the stress block along the depth.  The 

stress in the tendon is calculated from the constitutive relationship for prestressing steel.  

The relationship is explained in Section 1.7, Prestressing Steel. 
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The expressions of the forces are as follows.  

Cs’  = As’fs’                                                          (3-6.1) 
Cc = 0.36fckxub                                                  (3-6.2) 
Tp = Apfpu                                                                                       (3-6.3) 
Ts = Asfs                                                                                          (3-6.4) 

 

The strengths of the materials are denoted by the following symbols. 

fck  = characteristic compressive strength of concrete 

fpk  = characteristic tensile strength of prestressing steel 

fy  = characteristic yield stress of reinforcing steel  

 

Based on the principles of mechanics (as explained under the Analysis of a Rectangular 

Section in Section 3.4, Analysis of Member Under Flexure (Part III)), the following 

equations are derived. 

 

1) Equations of equilibrium  

The first equation states that the resultant axial force is zero.  This means that the 

compression and the tension in the force couple balance each other. 

∑
⇒
⇒

⇒

u u
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' '
p pu s s ck u s s
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(3-6.5) 
 

The second equation relates the ultimate moment capacity (MuR) with the internal 

couple in the force diagram. 

 
( ) ( ) ( )
( ) ( ) (

p
uR s p c p u s pA

'
s s p ck u p u s s p

M =T d - d +C d - x +C' d - d'

= A f d - d + f x b d - x + A' f d - d'

0.42

0.36 0.42
 

) (3-6.6) 
 

2) Equations of compatibility 

For each layer of steel there is a compatibility equation.  If there are distributed 

reinforcing bars in several layers and the spacing between the layers is large, then the 

use of compatibility equation for each layer is more accurate than the use of one 

compatibility equation for the centroid of the layers.  The following equations are 

developed based on the similarity of the triangles in the strain diagram.  
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(3-6.7) u
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(3-6.8) 
 

(3-6.9) 
 

3) Constitutive relationships 

a) Concrete 

The constitutive relationship for concrete is considered in the expressions of Cc. This is 

based on the area under the design stress-strain curve for concrete under compression.  

 

b) Prestressing steel  

( )pu pf = F ε1 (3-6.10) u

 

c) Reinforcing steel  
( )
( )

s s

' '
s s

f = F ε

f = F ε
2

3

(3-6.11) 
(3-6.12) 

For mild steel  

(3-6.13) '
s y

s y

f = f
f = f

0.87
0.87 (3-6.14) 

 

The known variables in an analysis are: b, d, d’, dp, As, As’, Ap, ∆εp, fck, fy and fpk.      

The unknown quantities are: MuR, xu, εs, εs’, εpu, fs, fs’ and fpu. 

 

The objective of the analysis is to find out MuR, the ultimate moment capacity.  

The previous equations can be solved by the strain compatibility method as 

discussed for the fully prestressed rectangular section. 

1) Assume xu.  

2) Calculate εpu from Eqn. 3-6.7.  

3) Calculate fpu from Eqn. 3-6.10.  

4) Calculate Tp from Eqn. 3-6.3.  

5) Calculate εs from Eqn. 3-6.8.  

6) Calculate fs from Eqn. 3-6.11.  

7) Calculate Ts from Eqn. 3-6.4.  

8) Calculate εs’ from Eqn. 3-6.9.  
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9) Calculate fs’ from Eqn. 3-6.12.  

10) Calculate Cs’ from Eqn. 3-6.1.  

11) Calculate Cc from Eqn. 3-6.2.  

If Eqn. 3-6.5 (Tu = Cu) is not satisfied, change xu.  

If Tu < Cu decrease xu. If Tu > Cu increase xu. 

 12) Calculate MuR from Eqn. 3-6.6. 

The capacity MuR can be compared with the demand under ultimate loads.  

 

3.6.2 Analysis of Unbonded Post-tensioned Beam  
 

In an unbonded post-tensioned beam, the ducts are not grouted. Hence, there is no 

strain compatibility between the steel of the tendons and the concrete at a section. The 

compatibility is in terms of deformation over the length of the member. 

  

A sectional analysis is not possible. The analysis involves integrating the strain in 

concrete to calculate the deformation over the length of the member.  

The equation of compatibility is given as follows.  

∆p = ∆cp                                                                                  (3-6.15) 
Here,  

∆p = deformation of the tendon 

  ∆cp = deformation of the concrete at the level of prestressing steel (CGS). 

 

The change in stress in steel (∆fp) at ultimate is determined from ∆p. The stress in steel 

at ultimate is given by the sum of the effective prestress (fpe) and ∆fp.  

fpu = fpe + ∆fp                                                                              (3-6.16) 
 

The value of fpu is less than that for a bonded tendon. The ultimate moment is given by 

the following equation. 
( )uR p pu uM = A f d - x0.42  (3-6.17) 

 

The rigorous method of evaluating fpu, based on deformation compatibility, is difficult. 

IS:1343 - 1980 allows to calculate fpu and xu approximately from Table 12, Appendix B, 

based on the amount of prestressing steel. The later is expressed as the reinforcement 

index ωp = Apfpk / bdfck.  Table 12 is reproduced as Table 3-6.1 which is applicable for 
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unbonded post-tensioned beams.  The values of fpu and xu are given as fpu/fpe and Xu/d, 

respectively.  The effective prestress (after the losses) in a tendon is represented as fpe.    
   
  

Table 3-6.1    Values of x  and f  for unbonded post-tensioned rectangular beams 

(Table 12, IS:1343 - 1980)
u pu

 

fpu/fpe

For values of L/d 

xu/d 

For values of L/d ωp

30 20 10 30 20 10 

0.025 1.23 1.34 1.45 0.10 0.10 0.10 

0.05 1.21 1.32 1.45 0.16 0.16 0.18 

0.10 1.18 1.26 1.45 0.30 0.32 0.36 

0.15 1.14 1.20 1.36 0.44 0.46 0.52 

0.20 1.11 1.16 1.27 0.56 0.58 0.64 

 

The values of fpu/fpe and xu/d from Table 3-6.1 are plotted in Figures 3-6.2 and    3-6.3, 

respectively.  It is observed that with increase in ωp, fpu reduces and xu increases.  This 

is expected because with increase in the amount and strength in the steel, the stress in 

steel drops and the depth of the neutral axis increases to maintain equilibrium. 
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Figure 3-6.2    Variation of fpu with respect to wp (Table 3-6.1) 
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Figure 3-6.3    Variation of xu/d with respect to wp (Table 3-6.1) 

 

Thus given the value of ωp for a section, the values of fpu and xu can be approximately 

calculated from the above tables. 

 
3.6.3 Analysis of Behaviour 
  

The analysis of behaviour refers to the determination of the complete moment versus 

curvature behaviour of the section.  The analyses at transfer, under service loads and 

for ultimate strength correspond to three instants in the above behaviour. 

  

The curvature (φ) is defined as the gradient of the strain profile.  

c cpε + ε
φ=

d

 

(3-6.18) 
Here, 

εc = extreme concrete compressive strain  

εcp = strain in concrete at the level of prestressing steel (CGS)  

d = depth of the CGS. 

The following sketch shows the curvature (φ) in the strain profile. 
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Figure 3-6.4    Definition of curvature 

 

The analysis of behaviour involves the following three principles of mechanics.  

1) Equilibrium of internal forces with the external loads at any point of the 

behaviour. There are two equilibrium equations. 

a) Force equilibrium equation 

b) Moment equilibrium equation. 

The internal forces in concrete and steel are evaluated based on the respective 

strains, cross-sectional areas and the constitutive relationships. 

 

2) Compatibility of the strains in concrete and in steel for bonded tendons. This 

assumes a perfect bond between the two materials. For unbonded tendons, the 

compatibility is in terms of deformation. 

 

3) Constitutive relationships relating the stresses and the strains in the materials. 

The relationships are developed based on the material properties. 

 

The equilibrium and compatibility equations and the constitutive relationships can be 

solved to develop the moment versus curvature curve for a section. 

  

The following plot shows the curves for a prestressed section and a non-prestressed 

section. The two sections are equivalent in their ultimate flexural strengths. 
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Figure 3-6.5    Moment versus curvature curves 

 

From the previous plot, the following can be inferred. 

1) Prestressing increases the cracking load. This leads to the following benefits. 

• Reduction of steel corrosion 

⇒ Increase in durability. 

• Full section is utilised 

⇒ Higher moment of inertia (higher stiffness) 

⇒ Less deformations (improved serviceability). 

• Increase in shear capacity. 

 2) Prestressing shifts the curve from the origin. 

• For the prestressed member, there is a negative curvature causing camber in 

absence of external moment. 

• A certain amount of external moment is required to straighten the member. 

3) For a given moment, the curvature of the prestressed member is smaller. 

• Prestressing reduces curvature at service loads. 

4) For a given reverse moment, the curvature of the prestressed member is   

      larger. 

• Prestressing is detrimental for the response under reverse moment. 

5) The ultimate strength of the prestressed member is lower.  

• Prestressing is detrimental under reverse moment.  

6) For a partially prestressed section with the same ultimate strength, the   

       moment versus curvature curve will lie in between the curves for   

          prestressed and non-prestressed sections. 
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Ductility  

The ductility is a measure of energy absorption. For beams, the curvature ductility (µ) is 

defined as  

(3-6.19) ϕ
ϕ

= u

y

µ
 

Here, 

φu = curvature at ultimate 

φy = curvature at yield. 

For prestressed beams, φy can be defined corresponding to a plastic strain of 0.002 in 

the prestressing tendons.  It has been observed that the ductility of prestressed beams 

is less than that in reinforced concrete beams. 

 

In design of members for seismic forces, ductility is an important requirement. In 

addition, seismic forces lead to reversal of moments near the supports of beams in a 

moment resisting frame.  Hence, prestressing of beams in a moment resisting frame is 

not recommended in seismic areas. 

 

Experimental Investigation 
The behaviour of a beam and its ultimate strength can be determined by testing 

prototype specimens. The tests can be conducted under static or dynamic loads. 

Testing also helps to check the performance of the anchorage units.  

The following photo shows the set-up for testing a prototype bridge girder. 

 
Figure 3-6.6    Set-up for testing a bridge girder  


